• Title/Summary/Keyword: Subwavelength slit

Search Result 6, Processing Time 0.019 seconds

Near-field Characterization on Light Emanated from Subwavelength Plasmonic Double Slit of Finite Length

  • Kim, Ki-Young;Goncharenko, Anatoliy V.;Hong, Jian-Shiung;Chen, Kuan-Ren
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.196-201
    • /
    • 2011
  • Near-field properties of light emanated from a subwavelength double slit of finite length in a thin metal film, which is essential for understanding fundamental physical mechanisms for near-field optical beam manipulations and various potential nanophotonic device applications, is investigated by using a three-dimensional finite-difference time-domain method. Near-field intensity distribution along the propagation direction of light after passing through the slit has been obtained from the phase relation of transverse electric and magnetic fields and the wave impedance. It is found that the near field of emerged light from the both slits is evanescent, that is consistent with conventional surface plasmon localization near the metal surface. Due to the finite of the slit, the amplitude of this evanescent field does not monotonically approach to than of the infinite slit as the slit length increases, i.e. the near-field of the longer slit along the center line can be weaker than that of the shorter one.

Subwavelength Focusing of Light From a Metallic Slit Surrounded by Grooves with Chirped Period

  • Yoon Jaewoong;Choi Kiyoung;Song Seok Ho;Lee Gwansu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.162-168
    • /
    • 2005
  • Extraordinary phenomena related to the transmission of light via metallic films with subwavelength holes and grooves are known to be due to resonant excitation and interference of surface waves. These waves make various surface structures to have optically effective responses. Further, a related study subject involves the control of light transmitted from a single hole or slit by surrounding it with diffractive structures. This paper reports on the effects of controlling light with a periodic groove structure with Fresnel-type chirping. In Fresnel-type chirping, diffracted surface waves are coherently converged into a focus, and it is designed considering the conditions of constructive interference and angular spectrum optimization under the assumption that the surface waves are composite diffracted evanescent waves with a well-defined in-plane wavenumber. The focusing ability of the chirped periodic structures is confirmed experimentally by two-beam attenuated total reflection coupling. Critical factors for achieving subwavelength foci and bounds on size of focal spots are discussed in terms of the simulation, which uses the FDTD algorithm.

Beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings (금속 슬릿 주변에 유전체 chirped grating을 배열함으로써 구현한 beam focusing)

  • Kim, Se-Yun;Park, Jeong-Hyeon;Im, Yong-Jun;Kim, Hwi;Lee, Byeong-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.255-256
    • /
    • 2007
  • We propose a novel method for the beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. In the proposed method, the period of each grating is chirped to make a focused beam at the desired position. Design of the grating structures for optimal beam focusing and the analysis of the field distribution are conducted based on the rigorous coupled wave analysis (RCWA). It is shown that the focused beam is formed at 1.5${\mu}m$ from the metal substrate and its full width at half maximum (FWHM) is 411nm.

  • PDF

Theoretical and Numerical Study of Cylindrical-vector-mode Radiation Characteristics in Periodic Metallic Annular Slits and Their Applications

  • Kim, Hyuntai;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.482-487
    • /
    • 2018
  • We investigate the radiation characteristics of radially polarized light and azimuthally polarized light through plasmonic subwavelength-scale annular slit (PSAS) structures, by means of both theoretical and numerical methods. Effective-medium theory was utilized to analyze the characteristics of PSAS structures, and the corresponding results showed that PSAS structures can function as a metallic medium for azimuthally polarized light, or as a low-loss dielectric medium for radially polarized light. Numerical calculations based on the finite-element method were also performed, to verify the theoretical analyses. It turned out that the numerical results supported the theoretical results. Moreover, we exploited the PSAS structures in novel nanophotonic elements with dual functionalities that could selectively focus or pass/block incident light, depending on its polarization state. For example, if PSAS structures were implemented in the dielectric region of a metallic Fresnel zone plate, the modified zone plate could function as a blocking element to azimuthally polarized light, yet as a focusing element to radially polarized light. On the contrary, if PSAS structures were implemented in the metallic region of a metallic Fresnel zone plate (i.e. the inverted form of the former), it could function as a focusing element to azimuthally polarized light, yet as a simple transparent element to radially polarized light.

Modal Analysis of Point and Discretized Continuous Spectra for Metal-Insulator-Metal Waveguides in the Terahertz Region

  • Hur, Jun;Choo, Hosung;Park, Jong-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1644-1654
    • /
    • 2018
  • Eigenvalue distributions for a periodic metal-insulator-metal waveguide, classified into the point spectrum and the discretized continuous spectrum (DCS), are investigated as functions of frequencies, gap widths, and periods. Muller's method is suggested for solving exact eigenvalues, and we propose the scheme for finding proper initial values in the Muller's method by considering only ${\Re}e({\varepsilon}_r)$ in the dispersion equation. We then find that anti-crossing behavior, repulsive effect between the point spectrum and the DCS, becomes stronger when the real parts of the roots in the point spectrum have smaller values. Finally, we examine the transmittances of a single subwavelength slit for real metals using the mode matching technique. The transmittances in real metals similarly follow those of the perfect electric conductor (PEC) at low frequencies, while the patterns at higher frequencies begin to differ from the PEC.

Transmission Characteristics of Periodic Au Slits at Terahertz Regimes (테라헤르츠 영역에서 금으로 구성된 주기적인 소형 개구의 투과 현상)

  • Yoo, Sungjun;Park, Jong-Eon;Lee, Jun-yong;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • Electromagnetic wave transmission through periodic metal-insulator-metal(MIM) waveguides as a function of plate thickness has not been extensively studied at various terahertz frequencies. In this paper, we investigate the transmittances through gold MIM slits when a normally incident wave with parallel polarization is considered at several terahertz frequencies. In addition, the results are compared to the case of a perfect electric conductor, and the differences are discussed.