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Abstract – Eigenvalue distributions for a periodic metal-insulator-metal waveguide, classified into 
the point spectrum and the discretized continuous spectrum (DCS), are investigated as functions of 
frequencies, gap widths, and periods. Muller’s method is suggested for solving exact eigenvalues, and 
we propose the scheme for finding proper initial values in the Muller’s method by considering only 
Re(εr) in the dispersion equation. We then find that anti-crossing behavior, repulsive effect between 
the point spectrum and the DCS, becomes stronger when the real parts of the roots in the point 
spectrum have smaller values. Finally, we examine the transmittances of a single subwavelength slit 
for real metals using the mode matching technique. The transmittances in real metals similarly follow 
those of the perfect electric conductor (PEC) at low frequencies, while the patterns at higher 
frequencies begin to differ from the PEC. 
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1. Introduction 
 
Researches on the transmission of electromagnetic 

waves through slits or apertures in terahertz (THz) 
frequencies have been recently investigated [1-7]. The 
fundamental guided geometry with one-dimensional 
metal-insulator-metal (MIM) layer is known as the 
metal-insulator-metal waveguide (MIMW). The MIMW 
becomes more important in THz applications, especially in 
guiding structures or subwavelength apertures, to study the 
reflection and transmission effects of discontinuities and 
their multi-junction structures. To explain the basic concept 
of the MIMW, it is necessary to understand the transition 
from dielectric slab waveguides (DSWs) to parallel plate 
waveguides (PPWs). The relative permittivity of metals 
can be written as: 

 
 r je e e¢ ¢¢= - . (1) 

 
The real parts of the permittivities Re(εr) in real metals, 

such as gold, silver, aluminum, and copper, are usually 
negative quantities in the THz regime below the plasma 
frequency [8] as well as microwave frequencies. As the 
frequency decreases and approaches the microwave band, 
the |Re(εr)| increases as listed in Table 1. Moreover, the 
|Im(εr)| grows drastically to |Im(εr)| >> |Re(εr)| in the 
frequency range below 10 THz, and this abrupt increase in 
|Im(εr)| is due to not only the damping loss by molecules 
but also the conductivity of real metals. The conducting 

effect predominates over the microwave band and then 
the metal can be regarded as a perfect electric conductor 
(PEC). In such a case, the electromagnetic field inside the 
PEC is zero, and the MIMW can be regarded as the PPW. 
On the other hand, Re(εr) of real metals in frequency 
range of near-infrared or visible light has a negative value, 
and |Im(εr)| is getting smaller than that in the microwave 
band, resulting in |Im(εr)| < |Re(εr)|. In this case, the 
Im(εr) mostly stands for the damping loss, and the 
electromagnetic waves can penetrate the real metals due 
to the small |Im(εr)|. Assuming that the loss by Im(εr) is 
extremely small enough to be ignored, the MIMW can be 
approximated to the DSW.  

Modal analysis [9, 10] is the most fundamental and 
intuitive method to investigate the electromagnetic 
behaviors in the MIMW and the transition characteristics 
between PPW and DSW. The eigenvalues in the MIMW 
are separated into the point and continuous spectra [4, 11, 
12]. The point spectrum is reclassified into the 
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Table 1. Relative permittivities εr,m of Ag, Cu, and Al [18]. 

Frequency 
(THz) Ag Cu Al 

1.2 −192760 – 
j731720 

−13536 – 
j158760 

−44623 – 
j513470 

10 −37433 – 
j21558 

−7032.0 – 
j15057 

−30276 − 
j33929 

30 −3738.3 − 
j1487.3 

−4030.1 − 
j1090.7 

−6361.9 − 
j3670.2 

50 −1470.8 − 
j355.65 

−1509.2 − 
j288.09 

−2776.2 − 
j1294.0 

100 −380.76 − 
j48.957 

−389.12 − 
j59.843 

−845.11 − 
j245.75 

200 −94.108 − 
j7.567 

−100.72 − 
j14.034 

−213.96 − 
j42.987 
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propagating, evanescent, and anomalous modes [1] similar 
to the spectrum of the PPW, except the anomalous one. The 
point spectrum can explain the sinusoidal electromagnetic 
field patterns in the insulator. In the MIMW, the eigenvalues 
of the continuous spectrum are discretized and is renamed 
to the discretized continuous spectrum (DCS) [4]. The 
DCS describes the sinusoidal field patterns mainly in the 
metal region and imitates the radiation mode in DSW, but 
there is no role for radiation. From the eigenvalues of the 
spectra, the electromagnetic field patterns, propagating 
properties, and orthogonal relation among modes can be 
explained in detail.  

The theories of the modal analyses and their 
completeness for the DSW and PPW are well established, 
but recently MIMWs has been studied and their relevant 
literature has been published [1, 2, 4]. Propagating and 
evanescent modes depending on various relative 
permittivities, boundaries between evanescent and anomalous 
eigenvalues according to the gap width, and confluence 
of anomalous modes for MIMW are discussed [1]. The 
modal analysis for the waveguides, their field patterns, 
backward and forward modes for each eigenvalue, and 
completeness are also described in detail and are verified 
using finite-difference frequency-domain (FDFD) method [4]. 
Transmission and scattering properties of subwavelength 
slits in metals are dealt in [5]. Imaginary metals being 
arbitrarily suggested with negative Re(εr) are applied in 
the subwavelength slit geometries and compared with PEC 
in terms of transmission efficiencies [6]. The study on the 
MIMW is extended to the characteristic observation of 
the transmittances of deep-subwavelength slit at THz 
frequencies [7]. However, the relative permittivity of a 
particular wavelength for silver [4] and limited range of 
frequencies [1-6] are observed in the previous studies. In 
addition, the analysis of eigenvalues and their distributions 
are not fully investigated in detail.  

In this paper, we examine the distribution of eigenvalues 
of MIMW at THz frequencies. In particular, we analyze the 
eigenvalues of the point spectrum and DCS for real metals 
in accordance with frequencies, gap widths, and periods of 
MIMW. First, several preliminaries, such as the basic 
geometry of MIMW and material properties of real metals 
are introduced. The dispersion equation in MIMW is 
presented, and then the Muller’s method [13] rather than 
the others is adopted to solve the dispersion equation. The 
Muller’s method is especially robust for finding the 
complex solutions when proper initial roots are given. 
Since the large amount of |Im(εr)| makes one difficult to 
find eigenvalue solutions in the Muller’s method, we 
propose the scheme for finding proper initial values of the 
dispersion equation by considering only Re(εr), and then 
the exact roots can be iteratively found by increasing the 
imaginary part |Im(εr)| in the Muller’s method.  

Next, the distributions of the spectra as a function of 
frequency are investigated. As the frequency (or wavelength) 
varies, the relative permittivity changes as well, so the 

solution also varies significantly. We observe the eigenvalue 
distributions of both the point spectrum and DCS for 
various subwavelength slit widths and periods. The anti-
crossing behavior which seems to be inherent to satisfy 
the orthogonality among the modes will be explained. 
Finally, by applying the point spectrum and DCS to 
mode matching technique (MMT), the transmittances 
through the subwavelength slit in real metals are obtained 
and compared to the results using the subwavelength slit in 
PEC. The transmission characteristics can be applied to 
the optical applications such as the optical bend, splitter, 
switch, and demultiplexer [14, 15]. 

 
 

2. Preliminaries 
 

2.1 Problem geometry and dispersion equation 
 
Figs. 1(a) and 1(b) describe the geometry of the MIMW 

to be analyzed. An electromagnetic wave with TM modes 
propagates along z-axis. The structure has a period of 
2(g+h) in the x-axis, where the thicknesses of the metal and 
the insulator are 2h and 2g, respectively, and it is uniform 
along the y-axis. The waveguide structure is composed of 
layers arranged in the order of metal, insulator, and metal, 

 
(a)  

  
(b) 

Fig. 1 Geometry of the periodic MIMW with the gap width 
2g and the period 2(g+h). (a) Perspective view. (b) 
Side view. The MIMW is one-dimensional structure 
which is independent of y and z directions 
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and is thus called MIM waveguide (MIMW). In this paper, 
an insulator is fixed to vacuum (εr,i = 1). The operation 
principle of the MIMW is similar to the DSW that usually 
comprises the vacuum-dielectric-vacuum layers, because 
the arrangement of relative permittivities in MIMW and 
DSW are comparable to each other. Small (g < x < g+h), 
large (–g ≤ x ≤ g), and small (–g–h < x < –g) permittivities 
in both guide structures allow electromagnetic waves to 
propagate mainly along the central material (–g ≤ x ≤ g). 
We will consider only even modes because the even 
modes are enough to discuss the normal incidence for the 
MIMW. Both even and odd modes can be dealt with in the 
case of oblique incidence plane waves, which is beyond 
the scope of our work. The dispersion equation, the most 
fundamental equation in the MIMW, by assuming e+jωt time 
convention, is obtained as follows [1, 4, 16, 17]: 

 

 ( ) ( ), ,
, ,

, ,

/
tanh tanh

/
m n r m

i n m n
i n r i

g h
k e

k k
k e

= -  (2) 

, where  2 2 2 2 2
, , , , ,z n m n r m i n r ik k w me k w me= + = + .    (3) 

 
εr,m and εr,i are relative permittivities in metal and 

insulator, respectively. κm,n and κi,n are nth transverse 
propagation constants in metal and insulator, respectively, 
and kz,n is the nth propagation constant along z-axis. The 
subscripts n in κm,n, κi,n, and kz,n commonly indicate the nth 
modes, which are related to one another as in Eq. (3). The 
roots {κm,n}s of the dispersion equation are found using 
Muller’s method while varying the geometrical parameters 
(g and h) as well as the material parameter (εr,m). 

 
2.2 Material properties of real metals at THz 

frequencies 
 
For reference, the relative permittivities of a number 

of metals at several THz frequencies are listed in Table 1 
[18]. The imaginary parts of relative permittivities are 
given as negative numbers. As the frequency decreases, the 
magnitudes of both real and imaginary parts are increased. 
The material properties in Table 1 are applied in Eq. (2) 
and later in Section 3. 

 
2.3 Muller’s method 

 
There are well-known and classical numerical roots 

finding methods, such as the bisection method, Newton’s 
method, and secant method. However, these numerical 
techniques are limited to the equations with real-valued 
roots. The Muller’s method is effective in obtaining not 
only real, but also complex roots of arbitrary functions f(x) 
= 0 [13]. Even if there is the argument principle method 
[19], which is one of the other well-known ways of solving 
complex roots, the Muller’s method is more accurate and 
easier to obtain solutions once approximate roots are given. 

Therefore, only the Muller’s method is applied to solve the 
eigenvalues for the dispersion equation throughout the next 
section. Other complex root-finding methods can be found 
in [20-22]. 

 
2.4 Point spectrum and discretized continuous 

spectrum 
 
The dispersion equation of the non-periodic MIMW 

with the gap width 2g can be easily derived by increasing 
h to ∞ in Eq. (2). The geometry is comprised of metal (–
∞< x < –g), insulator (–g ≤ x ≤ g), and metal (g < x < ∞). 
Then, the eigenvalues in Eq. (2) can be classified into 
point and continuous spectra [4]. The point spectrum can 
be again categorized into propagating, evanescent, and 
anomalous modes. The point spectrum predominantly 
describes the H-field patterns in the insulator as sinusoidal 
harmonics, while the continuous spectrum mainly expresses 
the field patterns in the metal. However, when the non-
periodic structure is changed into a periodic structure, 
the continuous spectrum is discretized and is again 
referred to as the DCS. To solve the transmittance through 
a subwavelength slit, it is much easier to deal with the 
DCS rather than the continuous spectrum in numerical 
calculations. Therefore, we investigate the DCS, not the 
continuous spectrum, with the point spectrum in the next 
sections. 

 
 
3. Analysis of Point and Discretized Continuous 

Spectra 
 
In this section, we investigate the point spectrum and 

DCS distributions as functions of frequencies, gap widths, 
and periods. Only aluminum is taken into account as the 
material property of the real metal in Section 3.  

  
3.1 Scheme for finding roots in the point spectrum 

 
The Muller’s method is especially robust for finding the 

complex roots when initial approximate roots are given. 
Since a large amount of |Im(εr,m)| makes one difficult to 
find eigenvalue solutions in the Muller’s method, we 
propose the scheme for finding proper initial values of the 
dispersion equation by considering only Re(εr,m), and then 
the exact roots can be iteratively found by gradually 
increasing the imaginary part |Im(εr,m)| in the Muller’s 
method. If too large or entire value of Im(εr,m) is used in 
the Muller’s method, the resulting root can lead to an 
incorrect solution. The detailed procedure for finding roots 
is as follows: (i) Although the exact εr,m is a complex 
number as listed in Table 1, if we consider only the real 
part of εr,m, we can efficiently find the proper initial roots in 
the point spectrum. By substituting Eq. (3) into Eq. (2), κi,n 
can be eliminated, and Eq. (2) is rearranged as 



Jun Hur, Hosung Choo and Jong-Eon Park 

 http://www.jeet.or.kr │ 1647

 
( )

( )

2
, , 0

,
02, , ,

( ) tanh ( )

tanh ( ) 0.

r m r i

r i

r m r m r i

f x x k g

x x k h
x

e e

e
e e e

= + - ´

+ ´ =
+ -

  (4) 

 
x is normalized transverse propagation constant κm,n/k0 to 

be solved, and k0 is free-space wavenumber. Once we find 
the first root κm,0/k0, then κi,0/k0 and kz,0 are obtained by Eq. 
(3). The subscript 0s in κm,0, κi,0, and kz,0 indicate the TM0 
mode in MIMW and the first root in the point spectrum. 
TM2, TM4, etc. are the next even modes, and TM1, TM3, 
etc. are ignored since the odd modes are ruled out. If we set 
the insulator in a MIMW as vacuum, εr,i = 1, then Eq. (4) 
can be arranged as  

 

 
( )

( )
0

,2 2
, , 0

tanh ( )

1 tanh 1 ( )
r m

r m r m

x k hx

x x k g
e

e e

´
´ = -

+ - + - ´
.  (5) 

 
where εr,m is purely real, and thus the Eq. (5) can be solved 
relatively easily, and the first root should be found in 
vicinity of x = ,r me- . The first root in the point spectrum 
is crucial since it is the only propagating mode in the 
subwavelength MIMW. (ii) Once a first root is found in the 
point spectrum, next roots can be found one by one by 
gradually decreasing the trial root x from the first root. If 
all of the finite number of roots in the real-axis are found, 
the next roots are followed by purely imaginary values in 
the imaginary-axis. This is the procedure of solving all 
approximate roots in the point spectrum taking into 
account the real part of εr,m only. (iii) Next, we can 
iteratively approach from the approximate roots to the 
exact roots by gradually increasing the imaginary part of 
εr,m to the original value in Table 1. In this way, the 
Muller’s method can be applied optimally to this dispersion 
equation. 

 

3.2 Analysis depending on frequencies 
 
The period and the gap width are determined to be 5λ0 

and 0.1λ0, respectively. Other examples with different 
periods and gap widths can be applied, but the physical 
meaning is not so different. Fig. 2(a) shows the first 20 
roots of the point spectrum for four different frequencies 
using the aforementioned root finding scheme. The filled 
markers indicate the first roots at each frequency, which are 

relatively close to the ,( )r meRe  as we mentioned. 

Following roots are placed one by one as the Re(κm,n/k0) 
decreases. Fig. 2(b) shows the typical example of obtaining 
the first six roots in the case of 100 THz. First, we can 
obtain the roots with blue squares when the relative 
permittivity of aluminum is assumed to εr,m = –845.11. The 

first root is 29.090, which is close to ,( )r meRe . The 

second root of 27.319 and the third root of 21.125 are 
smaller than the first root. Then the purely imaginary roots 
j7.341, j27.453, and j40.673 are also easily obtained. Next, 
by gradually increasing the imaginary part of the εr,m, we 
can approach the exact roots as described with green 
squares using the Muller’s method. Note that exact roots 
are away from the real and imaginary axes, and the travel 
distances from the axes depend on the magnitude of the 
imaginary values. Since the imaginary value 3670.2 in εr,m 
at 30 THz is greater than 42.987 at 200 THz, the roots at 30 
THz move farther from axes than those at 200 THz, as 
shown in Fig. 2(a) (For the relative permittivity values, see 
Table 1). If we do not follow this procedure and put an 
arbitrary initial trial root in the Muller’s method, then the 
resulting roots do not converge easily to the exact solutions. 

The DCS is obtained at the periodic MIMW as discussed 
in subsection 2.4, and their propagation constants have 
little effect on wave propagation due to the large 
attenuation. However, the DCS is important since it 
contributes to the completeness property of the set of  

    

Im
(

m
/k

0)

 
(a)                                        (b) 

Fig. 2. (a) First twenty roots κm/k0 in the point spectrum in accordance with the four frequencies in the case of the gap width 
2g = 0.1λ0 and the period 2(g+h) = 5λ0. (b) The first six roots for considering only real part (blue) and for considering 
both real and imaginary parts (green) at 100 THz 
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modes [4]. It is also appropriate to deal with the DCS 
rather than the continuous spectrum in this paper because 
the continuous spectrum in non-periodic MIMW is not 
easy to apply MMT, which will be addressed in Section 4. 
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Fig. 3. Roots κm/k0 in the DCS in accordance with the four 

different frequencies (2g = 0.1λ0 and 2(g+h) = 5λ0). 
The roots in the point spectrum (three green and 
four magenta markers) are plotted to emphasize the 
anti-crossing behavior in the DCS 

The left four traces in Fig. 3 show the DCS at four different 
frequencies. Considering only Re(εr,m), the roots of the 
DCS are on the imaginary axis. However, after inserting 
Im(εr,m) into Eq. (2), the distributions of DCS are placed 
away from the imaginary axis (dashed line). The lowest 
eigenvalue in magnitude |κm/k0| at each frequency is the 
first root of the DCS and represents the lowest harmonics 
in the metal region. As the |κm/k0| increases, higher 
sinusoidal harmonics are resided in the metal region.  
Note that the distributions of DCS at 30 and 50 THz show 
the monotonic increases as the mode indices are raised. But, 
the distributions of DCS at 100 and 200 THz fluctuate 
more than those at 30 and 50 THz, and this phenomenon is 
called anti-crossing behavior [4]. This phenomenon can be 
explained by observing the distributions of aforementioned 
point spectrum in the right side of Fig. 3. For example, 
the modal eigenvalues at 100 THz with indices of 4, 5, 
and 6 green markers have a repulsion effect on the DCS 
distribution, resulting in slight fluctuations of the DCS 
along the imaginary axis. (4, 5, and 6 mean the 4th, 5th and 
6th eigenvalues in the point spectrum at 100 THz.) The 
DCS distribution at 200 THz is more influenced by the 
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Fig. 4 (a) Roots κm/k0 of the point spectrum with four different gap widths at 200 THz (the period 2(g+h) = 5λ0). (b) 
Enlarged view of the first roots near κm/k0 = 14.8 + j1.45 for four different gap widths. (c) Enlarged view of the roots 
near 1.59 + j13.7 for the three different gap widths. (d) Hy-field patterns for the case of (b). Each colored root of (b) 
corresponds to the field pattern of the same color. The central white region is the part with the insulator. The other 
regions outside the insulator are Al. Each pattern is shifted by +1 with respect to the previous one for better 
visualization. (e) Hy-field patterns for the case of (c). Each colored root of (c) corresponds to the field pattern of the 
same color. The central white region is the part with the insulator. The other regions outside the insulator are Al. 
Each pattern in green, red, and blue is shifted by +5, +3, and +1, respectively for better visualization 
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point spectrum, resulting in greater fluctuations since the 
eigenvalues of the point spectrum with four magenta 
markers are closer to the imaginary axis than those by 
100 THz. This behavior can be understood that each 
periodically formed field by the mode in the periodic 
MIMW has a particular effect on the fields of DCS modes, 
since this phenomenon disappears in a non-periodic 
MIMW [4]. From another point of view, it is natural effort 
to maintain orthogonal properties inherent in Eq. (2), 
although it is not perfect. If we investigate the orthogonal 
properties by assuming no fluctuations (with no repulsion 
effect), the orthogonality is slightly dissatisfied. 

 
3.3 Analysis depending on gap widths 

 
In this subsection, we investigate the distributions of the 

point spectrum and the DCS as a function of the gap width 
of 0.2λ0, 0.1λ0, 0.05λ0, and 0.01λ0. These gap widths fall 
within the subwavelength slit category. In addition, some 
Hy-field patterns of the point spectrum in accordance with 
the gap widths are tested. The frequency of interest is 200 
THz, and the period of the MIMW is fixed to 5λ0. 

Fig. 4(a) shows the distributions of the point spectrum as 
a function of four different gap widths. The filled markers 
represent the first roots of each gap width and almost 
overlap despite the different gap widths. Fig. 4(b) shows an 
enlarged view of only first eigenvalues, and now they are 
shown separately. How to obtain the first roots is already 
introduced in subsection 3.1, and these are more sensitive 
than the others in setting up the trial roots for the Muller’s 
method. The point spectrum represents the sinusoidal 
harmonics in the insulator as the DCS does in the metal, as 
stated earlier. Fig. 4(d) describes the Hy-field patterns for 
the first roots of the four different gap widths in Fig. 4(b). 
The Hy-field patterns are almost flat in the insulator, which 
are very similar to the pattern of TEM mode in PPW. These 
are the only propagating modes for each case due to the 
subwavelength slit geometry and play an important role in 

the resonant transmission through the subwavelength slit, 
as will be mentioned in Section 4. Fig. 4(c) is an enlarged 
view of other roots distribution in the vicinity of κm/k0 ≈ 
1.59 + j13.7. The Hy-field patterns in the gap (insulator) for 
the eigenvalues in Fig. 4(c) are also depicted in the Fig. 
4(e). The different sinusoidal harmonics for the three 
different gap widths are clearly observed. Although the 
number of zero crossings of the harmonics in the insulator 
are different, three field patterns have the same peak-to-
peak intervals in the gap. The field patterns in the gap can 
also be expected by the locations of κm/k0 in the point 
spectrum since the sinusoidal harmonics of the Hy-field are 
closely related to the values κm/k0. For instance, the number 
of roots for 2g = 0.01λ0 is two while it is twenty-one when 
2g = 0.2λ0, as shown in Fig. 4(a). This relation can be 
expressed as follows:  

 
 (Nq – 1) : q = (N0.01 – 1) : 0.01, (6) 

where q = 0.05, 0.1, and 0.2.  
 
Nq is the number of roots when 2g = qλ0. In other words, 

when 2g = 0.2λ0, the interval of the sinusoidal harmonics 
by the 21st mode is the same as that by the 2nd mode when 
2g = 0.01λ0.  

Fig. 5 shows the distributions of the DCS as a function 
of gap widths and is plotted in a similar manner to Fig. 3. 
The left traces are for the DCS, and the right markers are 
for the point spectrum, which are introduced to refer only 
to the anti-crossing behavior. When 2g = 0.2λ0, the blue 
distribution moves away from the imaginary axis and 
exhibits fluctuations by the markers 4, 5, 6, and 7 in the 
point spectrum. As already introduced in subsection 3.1 as 
the anti-crossing behavior, the distribution of the DCS 
further recedes from the imaginary axis when the blue 
markers approach the imaginary axis. The closer the roots 
are to the imaginary axis in the point spectrum, the more 
the repulsion effect on the DCS distribution is observed. A 
similar effect is also observed when 2g = 0.1λ0 and 0.05λ0. 

 
Fig. 5 Roots in κm/k0 of the DCS with four different gap widths at 200 THz (2(g+h) = 5λ0). The higher eigenvalues 

(Im(κm/k0) > 30) are excluded. The point spectrum on the right is plotted to emphasize the anti-crossing behavior. 
An inset figure is included to expand the superimposed roots of the point spectrum 
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For instance, the fourth red root (≈ 0.84 + j26.2) repels the 
DCS distribution more than the third red root (≈ 1.58 + 
j13.7). Another noteworthy feature in the anti-crossing 
behavior is found at the roots near 1.58 + j13.7, which are 
nearly superimposed and distinguishable in the enlarged 
inset of Fig. 5. Even if the values of three roots in the inset 
are nearly the same, the repulsion effects are quite different. 
To be precise, the blue DCS distribution is less repelled, 
although the 5th blue marker is slightly closer to the 
imaginary axis. This unexpected and odd repulsion is not 
enough to be explained by the anti-crossing behavior alone. 
It can be better understood by the Hy-field patterns in Fig. 
4(e), where the roots in the inset of Fig. 5 are the same as 
the roots in Fig. 4(c). As stated previously, the distributions 
of the DCS have fluctuations from the repulsion effect to 
satisfy the orthogonality. Although the markers of the point 
spectrum are placed almost at the same location, the 
strengths of the repulsion effect are different depending on 
the mode order of the Hy-field patterns. The lower the 
mode order, the stronger the repulsion effect. For instance, 
the field pattern of the 2nd green root in the inset of Fig. 5 is 
described at the top of Fig. 4(e). The Hy-field of the root 
stands for the TM2 mode, in which two zero crossings are 
observed in the insulator. On the other hand, the field 
pattern of the 5th blue root in the inset of Fig. 5 is shown at 
the bottom of the Fig. 4(e). The Hy-field of the root 
represents the TM8 mode since the number of zero 
crossings is 8 in the insulator. As the mode number of 
sinusoidal harmonics in the insulator decreases, the 
distribution of the DCS exhibits stronger repulsion effect as 
observed at near j13.7, although eigenvalues in the point 
spectrum are nearly the same. 

 
3.4 Analysis depending on periods 

 
Fig. 6 illustrates the point spectrum and the DCS 

according to the periods 5λ0, 10λ0, 15λ0 and 20λ0 when the 
gap width 2g = 0.1λ0, and the frequency of interest is 200 
THz. The markers of the point spectrum are rarely shifted 
with the variation of period since the sinusoidal harmonics 
of the Hy-field in the insulator also do not change 
regardless of the variation in the period. Therefore, just the 
3rd and 4th roots in the point spectrum are plotted to 
emphasize the anti-crossing behavior. 

The distributions of the DCS are shown in the negative 
real part of κm/k0 in Fig. 6. Each root describes the 
sinusoidal harmonics of Hy-field primarily in the metal. 
Because the metal portion is much wider than the insulator 
within a single period, the wide period allows to reside in 
more sinusoidal harmonics in the metal. So the number of 
roots in the range Im(κm/k0) = (0, 30) with a period 20λ0 is 
327 while the number is 154 with a period 5λ0 in the same 
range. The use of more harmonics has the advantage of 
accurately solving electromagnetic scattering or diffraction 
problems through a single subwavelength slit. For more 
discussions, see the appendix in [7]. Furthermore, we can 

find the different anti-crossing behaviors for different 
periods. As shown in the Fig. 6, when the period = 5λ0, the 
distribution of the DCS is more receded than that by 20λ0. 
It can be understood that all modes with a small period 
give close effects to each other, while the effects are 
getting smaller as the period increases. In other words, the 
modes are highly coupled with a small period, whereas the 
coupling of the modes gradually decreases as the period is 
enlarged, and eventually the modes are not coupled at all 
for an infinite period, which is a non-periodic slit. 

Scattering or diffraction of a single subwavelength slit 
can be solved directly by some techniques, and it can be 
also solved by transition from a periodic MIMW to a single 
subwavelength slit. In the latter case, a wide periodic 
MIMW can better imitate a single subwavelength slit. 
Therefore, the MIMW with a wide period is preferable to 
solve the diffraction and transmission of a single 
subwavelength slit. However, the wider period involves a 
larger number of modes, resulting in increased elements in 
the matrix calculation, which eventually results in much 
more computation time. Therefore, choosing a proper 
period is one of the important criteria for the single 
subwavelength slit problem. In the following section, we 
set the period for the slit problem to 5λ0 since the period 
5λ0 is enough to include sufficient modes and thus nearly 
close to the original problem. 

 
 

4. Transmittance 
 
Now, we investigate the transmittances through a single 

subwavelength slit of PEC and real metal plates. The 
periodic MIMW in Fig. 1 can be extended to the geometry 
of a single subwavelength silt in Fig. 7 by assuming a 
finite thickness d in the z-direction and setting x-

 
Fig. 6. Roots κm/k0 in the DCS with four different periods 

at 200 THz (2g = 0.1λ0). The eigenvalues in the 
point spectrum, noted as black 3 and 4, at the right 
side are shown overlapping for four different periods. 
The wider the period, the denser the eigenvalues in 
the DCS and less anti-crossing behavior 
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direction as non- periodic (infinite to +x and –x directions). 
We focused on the thickness d in this geometry to 
investigate the resonance phenomenon in the transmission 
through the slit, while Fig. 1 examines the guiding 
structure in an infinite z-direction. An electromagnetic 
plane wave is normally incident from the left free space 
and transmitted into the right free space. As is usual for 
this geometry, only TM polarization is focused on. The 
transmittance τ (dimensionless) is defined as [23] 

 

 *1 1
2 4

t
Li i

P E H zdS
g W gW

t é ù= = ´ ×ë ûò
r r $Re , (7) 

 
where Pt is the transmitted power into the right free 
space, and Wi is the incident power density in the left free 
space. The line integration is carried out over the L, the 
boundary between the slit and the right free space. The 
MMT is applied to obtain the transmittances through the 
subwavelength slit of Fig. 7, but the transmittance of the 
non-periodic MIMW along x-directions is not easily 
obtained by the MMT. Thus, we adopt the structure in Fig. 
1 as an intermediate stage and gradually extend the period 
until it approaches a wider-periodic geometry with the 
transmittance close to the subwavelength slit of Fig. 7. 
The convergence of the transmittances is observed in [7], 
and the detailed procedures including MMT equations and 
multi-junction problem are introduced in [7, 24, 25]. 

Based on the studies of point spectrum and DCS in 
Section 3, transmittances through a metallic subwavelength 
silt can be observed. The more detailed process to obtain 

the transmittances is dealt with in [7]. In this work, we 
observe and compare the transmittances through Ag, Al, 
and Cu. The transmittances as functions of frequency, 
metal, and plate thickness are shown in Fig. 8 with the 
constant gap width 2g=0.05λ0. The transmitted power 
through the slit into the right free space can be calculated 
as Pt = Wi ´ t ´ 2g. For example, the repeated peak values 

 

 
Fig. 7. Geometry of a single subwavelength slit in the non-

periodic MIMW. A normal and TM-polarized 
electromagnetic wave is incident from the left free 
space and transmitted into the right free space. The 
plate thickness d is variable, and the gap width 2g is 
constant as 0.05λ0 

 
Fig. 8. Transmittances versus the plate thickness d with 2g = 0.05λ0 for the structure in Fig. 7. Ag, Al, and Cu at four 

frequencies are tested 
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in the PEC are equally observed as 6.366. Then, the 
transmitted power Pt of 6.366 × 0.05λ0 (When Wi = 1 W/m) 
at the repeated peaks is delivered into the opposite region. 
On the other hand, the lowest transmittance is observed to 
be less than 1, which means that incidence power density 
residing in an area smaller than the gap width can be 
transmitted through the slit. This periodic transmittance is 
understood as the resonance phenomenon [23, 26-30]. 

Crucial features in Fig. 8 are as follows. (i) The 
transmittance patterns at low frequencies similarly follow 
those of the PEC, while the patterns at higher frequencies 
begin to differ from the PEC. At lower frequencies, such as 
microwave band, real metals can be regarded as PEC, so 
this trend is expected and understandable. On the other 
hand, more discrepancies are observed at high frequencies 
since the large attenuation is embedded in real metals. In 
addition, the repeated peaks in transmittance are gradually 
attenuated because the real metals are lossy, and thicker 
plates have more ohmic loss. (ii) The intervals of periodic 
peaks in transmittances of the PEC are comparable with 
those of other metals. The equal peaks in the PEC appear 
repeatedly with an interval of 0.5λ0. Meanwhile, the 
intervals of repeated peaks for real metals are similar, but 
slightly different and less than 0.5λ0. This is caused by the 
fact that the propagation constants kz,0 of the dominant 
propagating mode for real metals are slightly larger than 
those for PEC. The appearance of periodic peaks of Ag 
and Cu are similar despite the different attenuations, while 
the intervals of periodic peaks of Al is slightly greater 
than those of Ag and Cu due to the smaller propagation 
constants of Al. (iii) It is interesting to note that the 
minimum transmittances for the metals at 100 and 200 THz 
are larger than those for the PEC when the thickness d is 
relatively thin. This is because the power transmission at 
thinner metal plate includes the high-order modes as well 
as the dominant propagating mode, while the transmission 
in PEC includes the only dominant propagating mode at all 
plate thicknesses. (iv) The transmittance tendencies for the 
Ag and Cu are similar but dissimilar from Al. This can be 
understandable from the material properties in Table 1 
where Ag and Cu are comparable, but Al is somewhat 
distinctive. Another remarkable point between Ag and Cu 
is that the Cu has a lower loss at 30 and 50 THz than Ag, 
but unusually has a greater loss at 200 THz than Ag due to 
the unique relative permittivity of Cu in Table 1. 

 
 

5. Conclusion 
 
In this paper, we analyzed the eigenvalue distributions as 

functions of frequencies, gap widths, and periods for the 
periodic MIMW with aluminum. The Muller’s method was 
applied to solve the eigenvalues for the dispersion equation, 
which is the most fundamental equation in the MIMW. 
To efficiently solve the exact roots of the eigenvalues, we 
used the scheme for finding proper initial values of the 

dispersion equation by considering only Re(εr,m), and the 
exact roots can be iteratively found by increasing 
|Im(εr,m)| in the Muller’s method. The results showed that 
the first roots of the point spectrum at each frequency are 

relatively close to the ,( )r meRe . The anti-crossing 

behavior was observed that the distribution of the DCS 
further receded from the imaginary axis when the point 
spectrum approached the imaginary axis. This behavior 
became stronger for the low-order modes in the point 
spectrum and weaker as the period of the MIMW was 
increased, while the point spectrum was rarely shifted 
depending on the period.  

In addition, we obtained the transmittances through a 
single slit for PEC and real metal plates. The transmittance 
patterns in real metals at low frequencies similarly 
followed those of the PEC, while the patterns at higher 
frequencies began to differ from the PEC. The intervals of 
periodic peaks in transmittances of the real metals were 
slightly shorter than those of the PEC because the 
dominant propagation constant for real metals is slightly 
larger than that for PEC. Especially, the transmittances of 
Cu had lower loss at 30 and 50 THz than those of Ag, but 
had more loss at 200 THz than Ag due to the unique 
relative permittivity of Cu. The current transmission 
analysis can be extended for the problems of the multiple 
slit cases or layered media.  
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