Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.2.196

Near-field Characterization on Light Emanated from Subwavelength Plasmonic Double Slit of Finite Length  

Kim, Ki-Young (Department of Physics, National Cheng Kung University)
Goncharenko, Anatoliy V. (Department of Physics, National Cheng Kung University)
Hong, Jian-Shiung (Institute of Electro-Optical Science and Engineering, National Cheng Kung University)
Chen, Kuan-Ren (Department of Physics, National Cheng Kung University)
Publication Information
Journal of the Optical Society of Korea / v.15, no.2, 2011 , pp. 196-201 More about this Journal
Abstract
Near-field properties of light emanated from a subwavelength double slit of finite length in a thin metal film, which is essential for understanding fundamental physical mechanisms for near-field optical beam manipulations and various potential nanophotonic device applications, is investigated by using a three-dimensional finite-difference time-domain method. Near-field intensity distribution along the propagation direction of light after passing through the slit has been obtained from the phase relation of transverse electric and magnetic fields and the wave impedance. It is found that the near field of emerged light from the both slits is evanescent, that is consistent with conventional surface plasmon localization near the metal surface. Due to the finite of the slit, the amplitude of this evanescent field does not monotonically approach to than of the infinite slit as the slit length increases, i.e. the near-field of the longer slit along the center line can be weaker than that of the shorter one.
Keywords
Subwavelength slit; Plasmonics; Near-field characterization; Finite-difference time-domain (FDTD) method;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 K. R. Chen, "Focusing of light beyond the diffraction limit of half the wavelength," Opt. Lett. 35, 3763-3765 (2010).   DOI   ScienceOn
2 K. R. Chen, W. H. Shu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, S. J. Chang, F. Y. Hung, H. H. Hwuang, and A. Y.-G. Huh, "Beyond-limit light focusing in the intermediate zone," arXiv:0901.1731.
3 K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).   DOI   ScienceOn
4 K. R. Chen, K. Y. Kim, J. S. Hong, A. V. Goncharenko, and K. J. Lee, "Near-field characterization on light emanated from subwavelength plasmonic double slits," in Proc. 4th Int. Conf. Electromagnetic Near Field Characterization and Imaging (Taipei, Taiwan, 2009), pp. 219-223.
5 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, USA, 1998).
6 J. Wuenschell and H. K. Kim, "Excitation and propagation of surface plasmons in metallic nanoslit structure," IEEE Trans. Nanotech. 7, 229-236 (2008).   DOI   ScienceOn
7 M. Mansuripur, Y. Xie, A. R. Zakharian, and J. V. Moloney, "Transmission of light through slit apertures in metallic films," IEEE Trans. Magnetics 41, 1012-1015 (2005).   DOI   ScienceOn
8 Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12, 6106-6121 (2004).   DOI
9 A. F. Pskooi, D. Roundry, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: a flexible freesoftware package for electromagnetic simulations by the FDTD method," Comp. Phys. Commun. 181, 687-702 (2010).   DOI   ScienceOn
10 J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons Inc., New York, USA, 1998).
11 R. Gordon, "Near-field interference in a subwavelength double slit in a perfect conductor," J. Opt. A: Pure Appl. Opt. 8, L1-L3 (2006).   DOI   ScienceOn
12 K.-M. Chae, H.-H. Lee, S.-Y. Yim, and S.-H. Park, "Evolution of electromagnetic interference through nano-metallic double-slit," Opt. Express 12, 2870-2879 (2004).   DOI
13 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, USA, 1988).
14 S. Ravets, J. C. Rodier, B. E. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, "Surface plasmons in the Young slit-doublet experiment," J. Opt. Soc. Am. B 26, B28-B33 (2009).   DOI   ScienceOn
15 P. Ginzburg, E. Hirshberg, and M. Orenstein, "Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments," J. Opt. A: Pure Appl. Opt. 11, 114024 (2009).
16 R. Zia and M. L. Brongersma, "Surface plasmon polariton analogue to Young's double-slit experiment," Nat. Nanotechnol. 2, 426-429 (2007).   DOI   ScienceOn
17 T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, "Directional excitation of surface plasmons with subwavelength slits," Appl. Phys. Lett. 92, 101501 (2008).   DOI   ScienceOn
18 Y. Wang, L. L. Wang, J. Q. Liu, X. Zhai, L. Wang, D. Xiang, Q. Wan, and B. Meng, "Plasmonic surface-wave bidirectional splitter in different angles of incident light," Opt. Comm. 283, 1777-1779 (2010).   DOI   ScienceOn
19 G.-G. Zheng and X.-Y. Li, "Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings," J. Opt. A: Pure Appl. Opt. 11, 075002 (2009).   DOI   ScienceOn
20 M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. I. Bloemer, and M. Scalora, "Beam steering from resonant subwavelength slits filled with a nonlinear material," J. Opt. Soc. Am. B 26, 301-307 (2009).   DOI   ScienceOn
21 T. Young, "Experiments and calculations relative to physical optics," Phil. Trans. R. Soc. Lond. 94, 1-16 (1804).
22 T. D. Visser, "Young's interference experiment: the long and short of it," in Tribute to Emil Wolf: Science and Engineering Legacy of Physical Optics, T. P. Jannson ed. (SPIE, Bellingham, USA, 2005), Chapter 15.
23 R. P. Feymann, R. L. Leighton, and M. Sanders, The Feymann Lectures on Physics (Addison-Wesley, MA, USA, 1965).
24 H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W.'t Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).   DOI   ScienceOn
25 C. H. Gan, G. Gbur, and T. D. Visser, "Surface plasmons modulate the spatial coherence of light in Young's interference experiment," Phys. Rev. Lett. 98, 043908 (2007).   DOI   ScienceOn
26 Z. Li, J.-S. Zhang, H.-F. Yan, and Q.-H. Gong, "Complex modulation in plasmon-assited transmission spectra of a two-slit structure," Chin. Phys. Lett. 24, 3233-3236 (2007).   DOI   ScienceOn
27 R. Welti, "Light transmission through two slits: the Young experiment revisited," J. Opt. A: Pure Appl. Opt. 8, 606-609 (2006).   DOI   ScienceOn
28 N. Kuzmin, G. W.'t Hooft, E. R. Eliel, G. Gbur, H. F. Schouten, and T. D. Visser, "Enhancement of spatial coherence by surface plasmons," Opt. Lett. 32, 445-447 (2007).   DOI   ScienceOn
29 T. D. Visser and R. W. Schoonover, "A cascade of singular field patterns in Young's interference experiment," Opt. Comm. 281, 1-6 (2008).   DOI   ScienceOn