• Title/Summary/Keyword: Subtractive clustering algorithm

Search Result 20, Processing Time 0.024 seconds

Speaker Identification with Estimating the Number of Cluster Based on Boundary Subtractive Clustering (경계 차감 클러스터링에 기반한 클러스터 개수 추정 화자식별)

  • Lee, Youn-Jeong;Choi, Min-Jung;Seo, Chang-Woo;Hahn, Hern-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.199-206
    • /
    • 2007
  • In this paper we propose a new clustering algorithm that performs clustering the feature vectors for the speaker identification. Unlike typical clustering approaches, the proposed method performs the clustering without the initial guesses of locations of the cluster centers and a priori information about the number of clusters. Cluster centers are obtained incrementally by adding one cluster center at a time through the boundary subtractive clustering algorithm. The number of clusters is obtained from investigating the mutual relationship between clusters. The experimental results for artificial datum and TIMIT DB show the effectiveness of the proposed algorithm as compared with the conventional methods.

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Design and Comparison of Error Correctors Using Clustering in Holographic Data Storage System

  • Kim, Sang-Hoon;Kim, Jang-Hyun;Yang, Hyun-Seok;Park, Young-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1076-1079
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating part is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Design and Comparison of Error Reduction Methods Using Clustering in Holographic Data Storage System (홀로그래픽 정보 저장 장치에서 클러스터링을 이용한 에러 감소 기법 제안 및 비교)

  • Kim Sang-Hoon;Kim Jang-Hyun;Yang Hyun-Seok;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.83-87
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating pare is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

OPTIMIZATION OF THE TEST INTERVALS OF A NUCLEAR SAFETY SYSTEM BY GENETIC ALGORITHMS, SOLUTION CLUSTERING AND FUZZY PREFERENCE ASSIGNMENT

  • Zio, E.;Bazzo, R.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.414-425
    • /
    • 2010
  • In this paper, a procedure is developed for identifying a number of representative solutions manageable for decision-making in a multiobjective optimization problem concerning the test intervals of the components of a safety system of a nuclear power plant. Pareto Front solutions are identified by a genetic algorithm and then clustered by subtractive clustering into "families". On the basis of the decision maker's preferences, each family is then synthetically represented by a "head of the family" solution. This is done by introducing a scoring system that ranks the solutions with respect to the different objectives: a fuzzy preference assignment is employed to this purpose. Level Diagrams are then used to represent, analyze and interpret the Pareto Fronts reduced to the head-of-the-family solutions.

Design Space Exploration of Many-Core Processor for High-Speed Cluster Estimation (고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색)

  • Seo, Jun-Sang;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.1-12
    • /
    • 2014
  • This paper implements and improves the performance of high computational subtractive clustering algorithm using a single instruction, multiple data (SIMD) based many-core processor. In addition, this paper implements five different processing element (PE) architectures (PEs=16, 64, 256, 1,024, 4,096) to select an optimal PE architecture for the subtractive clustering algorithm by estimating execution time and energy efficiency. Experimental results using two different medical images and three different resolutions ($128{\times}128$, $256{\times}256$, $512{\times}512$) show that PEs=4,096 achieves the highest performance and energy efficiency for all the cases.

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

A SOFT-SENSING MODEL FOR FEEDWATER FLOW RATE USING FUZZY SUPPORT VECTOR REGRESSION

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.