• Title/Summary/Keyword: Subthalamic nucleus deep brain stimulation

Search Result 14, Processing Time 0.029 seconds

Deep Brain Stimulation of the Subthalamic and Pedunculopontine Nucleus in a Patient with Parkinson's Disease

  • Liu, Huan-Guang;Zhang, Kai;Yang, An-Chao;Zhang, Jian-Guo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.303-306
    • /
    • 2015
  • Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is a novel therapy developed to treat Parkinson's disease. We report a patient who underwent bilateral DBS of the PPN and subthalamic nucleus (STN). He suffered from freezing of gait (FOG), bradykinesia, rigidity and mild tremors. The patient underwent bilateral DBS of the PPN and STN. We compared the benefits of PPN-DBS and STN-DBS using motor and gait subscores. The PPN-DBS provided modest improvements in the gait disorder and freezing episodes, while the STN-DBS failed to improve the dominant problems. This special case suggests that PPN-DBS may have a unique role in ameliorating the locomotor symptoms and has the potential to provide improvement in FOG.

Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

  • Ryu, Sang Baek;Bae, Eun Kyung;Kim, Jinhyung;Hwang, Yong Sup;Im, Changkyun;Chang, Jin Woo;Shin, Hyung-Cheul;Kim, Kyung Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 2013
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation.

Turning on the Left Side Electrode Changed Depressive State to Manic State in a Parkinson's Disease Patient Who Received Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Case Report

  • Kinoshita, Makoto;Nakataki, Masahito;Morigaki, Ryoma;Sumitani, Satsuki;Goto, Satoshi;Kaji, Ryuji;Ohmori, Tetsuro
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.494-496
    • /
    • 2018
  • No previous reports have described a case in which deep brain stimulation elicited an acute mood swing from a depressive to manic state simply by switching one side of the bilateral deep brain stimulation electrode on and off. The patient was a 68-year-old woman with a 10-year history of Parkinson's disease. She underwent bilateral subthalamic deep brain stimulation surgery. After undergoing surgery, the patient exhibited hyperthymia. She was scheduled for admission. On the first day of admission, it was clear that resting tremors in the right limbs had relapsed and her hyperthymia had reverted to depression. It was discovered that the left-side electrode of the deep brain stimulation device was found to be accidentally turned off. As soon as the electrode was turned on, motor impairment improved and her mood switched from depression to mania. The authors speculate that the lateral balance of stimulation plays an important role in mood regulation. The current report provides an intriguing insight into possible mechanisms of mood swing in mood disorders.

Factors Related to Outcomes of Subthalamic Deep Brain Stimulation in Parkinson's Disease

  • Kim, Hae Yu;Chang, Won Seok;Kang, Dong Wan;Sohn, Young Ho;Lee, Myung Sik;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.2
    • /
    • pp.118-124
    • /
    • 2013
  • Objective : Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment of choice for patients with advanced idiopathic Parkinson's disease (PD) who have motor complication with medication. The objectives of this study are to analyze long-term follow-up data of STN DBS cases and to identify the factors related to outcomes. Methods : Fifty-two PD patients who underwent STN DBS were followed-up for more than 3 years. The Unified Parkinson's Disease Rating Scale (UPDRS) and other clinical profiles were assessed preoperatively and during follow-up. A linear regression model was used to analyze whether factors predict the results of STN DBS. We divided the study individuals into subgroups according to several factors and compared subgroups. Results : Preoperative activity of daily living (ADL) and the magnitude of preoperative levodopa response were shown to predict the improvement in UPDRS part II without medication, and preoperative ADL and levodopa equivalent dose (LED) were shown to predict the improvement in UPDRS part II with medication. In UPDRS part III with medication, the magnitude of preoperative levodopa response was a predicting factor. Conclusion : The intensity of preoperative levodopa response was a strong factor for motor outcome. And preoperative ADL and LED were strong factors for ADL improvement. More vigorous studies should be conducted to elucidate how levodopa-induced motor complications are ameliorated after STN DBS.

Speech Evaluation Tasks Related to Subthalamic Nucleus Deep Brain Stimulation in Idiopathic Parkinson's Disease: A Review (특발성 파킨슨병의 시상밑부핵 심부뇌자극술 관련 말 평가 과제에 대한 문헌연구)

  • Kim, Sun Woo;Kim, Hyang Hee
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.237-255
    • /
    • 2014
  • Idiopathic Parkinson disease(IPD) is an neurodegenerative disease caused by the loss of dopamine cells in the substantia nigra, a region of midbrain. Its major symptoms are muscular rigidity, bradykinesia, resting tremor, and postural instability. An estimated 70~90% of patients with IPD also have hypokinetic dysarthria. Subthalamic nucleus deep brain stimulation (STN-DBS) has been reported to be successful in relieving the core motor symptoms of IPD in the advanced stages of the disease. However, data on the effects of STN-DBS on speech performance are inconsistent. A medline literature search was done to retrieve articles published from 1987 to 2012. The results were narrowed down to focus on speech performance under STN-DBS based perceptual, acoustic, and/or aerodynamic analyses. Among the 32 publications which dealt with speech performance after STN-DBS indicated improvement(42%), deterioration(29%), mixed results(26%), or no change(3%). The most favorite method was found to be based upon acoustic analysis by using a vowel prolongation and Unified Parkinson's Disease Rating Scale(UPDRS). For the purpose of verifying the effect of the STN-DBS, speech evaluation should be undertaken on all speech components such as articulation, resonance, phonation, respiration, and prosody by using a contextual speech task.

Deep Brain Stimulation for Controlling Refractory Epilepsy: a Clinical Perspective (난치성 뇌전증 치료를 위한 심부뇌자극술: 임상적 관점에서)

  • Kim, Woo Jun;Shon, Young-Min
    • Annals of Clinical Neurophysiology
    • /
    • v.14 no.2
    • /
    • pp.59-63
    • /
    • 2012
  • Epilepsy has continued to provide challenges to epileptologists, as a significant proportion of patients continue to suffer from seizures despite medical and surgical treatments. Deep brain stimulation (DBS) has emerged as a new therapeutic modality that has the potential to improve quality of life and occasionally be curative for patients with medically refractory epilepsy who are not surgical candidates. Several groups have used DBS in drug-resistant epilepsy cases for which resective surgery cannot be applied. The promising subcortical brain structures are anterior and centromedian nucleus of the thalamus, subthalamic nucleus, and other nuclei to treat epilepsy in light of previous clinical and experimental data. Recently two randomized trials of neurostimulation for controlling refractory epilepsy employed the strategies to stimulate electrodes placed on both anterior thalamic nuclei or near seizure foci in response to electroencephalographically detected epileptiform activity. However, the more large-scale, long-term clinical trials which elucidates optimal stimulation parameters, ideal selection criteria for epilepsy DBS should be performed before long. In order to continue to advance the frontier of this field, it is imperative to have a good grasp of the current body of knowledge.

Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

  • Lee, Kyung Jin;Shim, Insop;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il sup;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • Objective : High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson's disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods : The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results : High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion : Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia.