• Title/Summary/Keyword: Subsurface flow

Search Result 247, Processing Time 0.029 seconds

Application of Electrical Resistivity Survey For Contaminant Evaluation at Uncontrolled Landfills

  • Lee Seong-Soon;Yoon Hee-Sung;Lee Kang-Kun;Lee Jin-Young;Kim Chang-Gyun;Yu Young-Chul
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.432-435
    • /
    • 2006
  • To evaluate geology and extent of leachate migration around the landfills, electrical resistivity survey were conducted in area of uncontrolled landfills in Cheonan and Wonju. The Cheonan landfill is located above the paddy fields and the resistivity survey lines were crossed to confirm possible pollution of the paddy fields by leakage of the landfill leachate. In Wonju, the landfill and the downgradient paddy fields are divided by a concrete barrier wall. At the bottom of the landfill, there is a leachate settlement system but has not been in operation. And a total of 4 survey line installed (1 parallel and 3 perpendicular to mean groundwater flow direction). According to the resistivity survey results, the landfill leachate in Cheonan appeared to be restricted only within the interior of the landfill, not to migrate into the subsurface of the paddy fields. These results are well consistent with electrical conductivity values of groundwaters obtained from a periodic analysis of water qualities. In Wonju, however, it was inferred that the leachate emanating from the landfill migrated beneath the abandoned leachate settlement system and it would reach the downgradient paddy field.

  • PDF

Removal Mechanisms for Water Pollutant in Constructed Wetlands: Review Paper (인공습지에서 오염물질 제거기작 및 국내외 연구동향)

  • Ko, Dae-Hyun;Chung, Yun-Chul;Seo, Seong-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.379-392
    • /
    • 2010
  • In these days, constructed wetlands are applied in Korea for various purposes ; post-treatment of effluent in wastewater treatment, management of stormwater and restoration of aquatic ecosystems. However, the removal mechanisms for water pollutant in constructed wetlands are not clearly understood because they are affected by climate, influent characteristics and local constraints. Therefore, this paper is focused on the process that the pollutant, especially nitrogen and phosphorus, of the wetland is removed by. In this study, the main nitrogen removal is performed by nitrification/denitrification mechanism in the rhizosphere of constructed wetlands. And the majority of the phosphorus is removed by adsorption on the substrate of wetland. However the fate of phosphorus in wetlands can be diverse depending on the Oxidation Reduction Potential(ORP), adsorption/desorption, precipitation/dissolution, microbial effect, etc.

The Modified Eulerian-Lagrangian Formulation for Cauchy Boundary Condition Under Dispersion Dominated Flow Regimes: A Novel Numerical Approach and its Implication on Radioactive Nuclide Migration or Solute Transport in the Subsurface Environment

  • Sruthi, K.V.;Suk, Heejun;Lakshmanan, Elango;Chae, Byung-Gon;Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • The present study introduces a novel numerical approach for solving dispersion dominated problems with Cauchy boundary condition in an Eulerian-Lagrangian scheme. The study reveals the incapability of traditional Neuman approach to address the dispersion dominated problems with Cauchy boundary condition, even though it can produce reliable solution in the advection dominated regime. Also, the proposed numerical approach is applied to a real field problem of radioactive contaminant migration from radioactive waste repository which is a major current waste management issue. The performance of the proposed numerical approach is evaluated by comparing the results with numerical solutions of traditional FDM (Finite Difference Method), Neuman approach, and the analytical solution. The results show that the proposed numerical approach yields better and reliable solution for dispersion dominated regime, specifically for Peclet Numbers of less than 0.1. The proposed numerical approach is validated by applying to a real field problem of radioactive contaminant migration from radioactive waste repository of varying Peclet Number from 0.003 to 34.5. The numerical results of Neuman approach overestimates the concentration value with an order of 100 than the proposed approach during the assessment of radioactive contaminant transport from nuclear waste repository. The overestimation of concentration value could be due to the assumption that dispersion is negligible. Also our application problem confirms the existence of real field situation with advection dominated condition and dispersion dominated condition simultaneously as well as the significance or advantage of the proposed approach in the real field problem.

Comparative Analysis of Infiltration for Estimating Subsurface Runoff (지표하유출 산정을 위한 침투량의 비교분석)

  • Lee, Jae-Joon;Lee, Sung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.540-540
    • /
    • 2012
  • 강우 발생시 유역에 집수된 물이 하천에 이르는 경로에 따른 유출은 지표유출, 지표하유출, 지하수유출로 구분된다. 정확한 수문순환 과정의 해석을 위해서는 지표 흐름뿐만 아니라 지표하 및 지하수 흐름의 해석이 중요한 실정이나 일반적으로 실무에서 사용되는 강우-유출해석 모형은 지표유출을 해석하기 위한 모형이 대부분이며, 지표하 유출과 침투량을 산정하는데 어려움이 있다. 일반적인 강우-유출해석 모형은 Horton 방법, NRCS 방법, Green-Ampt 방법에 의해 유효우량을 분리하며, 이 과정은 침투량을 직접적으로 모형화 할 수 없으므로 지표 및 지표하, 지하수 흐름을 복합적으로 해석할 수 있는 모형이 질적이나 양적으로 부족한 실정이다. 이러한 지표하 흐름과 침투량을 산정하기 위하여 FE-FLOW, PM, MS-VMS, GMS, GW-VISTAS, ARGUS 및 MODFLOW와 같은 지하수 모형을 사용하고 있다. 본 연구에서는 지표하유출 산정을 위한 침투량의 비교분석을 위해 현재 가장 범용되는 지하수 유동 모델링 프로그램인 Visual Modlfow 모형과 GMS 모형을 이용하여 침투량 산정을 위한 수치 모의를 진행하였다. 각 모형의 입력자료는 2009년 국립방재연구원에서 수행한 침투실험시설 자료를 이용하여 동일한 조건을 부여하고, 두 모형의 비교를 위해 Visual Modflow에서는 MODFLOW의 기본 해석방법인 유한차분법(FDM)을 이용하고, GMS 모형에서는 3차원 유한요소해석이 가능한 GMS-FEMWATER를 이용하였다. 두 모형의 수치모의 조건으로 2009년 국립방재연구원에서 수행한 침투실험방법과 동일하게 공극률에 따른 투수성 보도블럭의 구분과 50mm/hr, 100mm/hr, 150mm/hr, 200mm/hr의 강우강도별 선행함수조건에 따른 수치모의를 진행하였으며, 수치모의된 침투량의 적정성을 판단하기 위하여 국립방재연구원의 침투실험 결과자료와 비교분석하였다. 침투실험 자료와 각각 수치모의된 침투량을 비교분석한 결과 서로 유사한 경향을 보이고 있으나 초기 침투시 상대오차가 비교적 크게 발생하였다. 이는 수치모형의 경우 수리실험과는 다르게 모의시작과 동시에 해당 강우강도의 침투가 시작되므로 초기 유입 유출량 발생시간의 차이가 종료시간까지 누적 침투량에 미치는 것으로 판단되며, 매개변수에 많은 영향을 받는 것으로 판단된다.

  • PDF

Subsurface Characterization using the Simultaneous Search based Pilot Point Method (SSBM) in Various Data Applications (지하수 흐름특성 분석을 위한 동시 검색기반 파일럿 포인트 방법 적용 - 다양한 데이터 활용 기반)

  • Jung, Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.579-586
    • /
    • 2019
  • Pilot Point Method (PPM) is one of the popular methods to search hydraulic conductivities in the inverse method using groundwater flow equations. In this study, the Simultaneous Search based Pilot Point Method (SSBM) was applied with diverse information (e.g. hydraulic heads and/or tracer concentration) applications over previously developed sensitivity based Pilot Point Method (e.g. D-optimality based Pilot Point Method: DBM). In the case of DBM, due to the minimized the variance size, tracer concentration can be recognized as a tool to control the searching space of hydraulic conductivities. SSBM reduced the procedure of hydraulic conductivity searching, though it produced more variance for exploring hydraulic conductivities. In addition, SSBM was dependent on the initial hydraulic conductivity values for search finalized hydraulic conductivities. When tracer concentration was applied, searching hydraulic conductivities was more preferable than only when hydraulic head was applied. Applications of various data for searching hydraulic conductivities is recommended as a more efficient way.

Manganese in Seawaters of the Amundsen Sea, Antarctic (남극 아문젠해에서 해수 중 Mn의 분포 특성)

  • Jang, Dongjun;Choi, Mansik;Park, Jongkyu;Park, Kyungkyu;Hong, Jinsol;Lee, Sanghoon;Jung, Jinyoung
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

Identification of Conductive Fractures in Crystalline Recks (유동성 단열 파악을 위한 암반 내 단열특성 규명)

  • 채병곤;최영섭;이대하;김원영;이승구;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.88-100
    • /
    • 1998
  • Since fractures may serve as major conduits of groundwater flow in crystalline rocks, characterization of conductive fractures is especially important for interpretation of flow system. In this study, characterization of fractures to investigate hydraulically conductive fractures in gneisses at an abandoned mine area was performed. The orientation, width, length, movement sense, infilling materials, spacing, aperture, roughness of both joints and faults and intersection and connectivity to other joints were measured on outcrops. In addition, characteristics of subsurface fractures were examined by core logging in five boreholes, of which the orientations were acquired by acoustic televiewer logging from three boreholes. The dominant fracture sets were grouped from outcrops; GSet 1: N50-82$^{\circ}$E/55-90$^{\circ}$SE, GSet 2: N2-8$^{\circ}$E/56-86$^{\circ}$SE, GSet 3: N46-72$^{\circ}$W/60-85$^{\circ}$NE, GSet 4:Nl2-38$^{\circ}$W/15-40$^{\circ}$SW and from subsurface; HSet 1: N50-90$^{\circ}$E/55-90$^{\circ}$SE, HSet 2: N10-30$^{\circ}$E/50-70$^{\circ}$SE, HSet 3: N20-60$^{\circ}$W/50-80$^{\circ}$NE, HSet 4: N10-50$^{\circ}$E/$\leq$40$^{\circ}$NW. Among them, GSet 1, GSet 3 and HSet 1, HSet 3 are the most intensely developed fracture sets in the study area. The mean fracture spacings of HSet 1 are 30-47cm and code 1 fractures, such as faults and open fractures, comprise 21.0-42.9 percent of the whole fractures in each borehole. HSet 3 shows the mean fracture spacings of 55-57cm and the ratio of code 1 fractures is 15.4-26.9 percent. In spite of the mean fracture spacing of 239cm, code 1 fractures of HSet 4 have the highest ratio of 54.5 percent. From the fact that faults or open fractures have high hydraulic conductivity, it can be inferred that the three fracture sets of N55-85$^{\circ}$E/50-80$^{\circ}$SE, N20-60$^{\circ}$W/50-75$^{\circ}$NE and N10-30$^{\circ}$E/$\leq$30$^{\circ}$NW from a fracture system of relatively high conductivity. It is indirectly verified with geophysical loggings and constant injection tests performed in the boreholes.

  • PDF

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

A Study on the Variation of the Surface and Groundwater Flow System Related to the Tunnel Excavation in DONGHAE Mine Area (II) - Hydrogeochemical Consideration (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구 (II)-수리지구화학적 고찰)

  • 전효택;이희근;이종운;이대혁;류동우;오석영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The hydrogeochemical study on the 15 natural waters was carried out in the vicinity of tunnel excavation site of Donghae largely composed of granite and limestone. The water samples can be classified based on their chemical characteristics into two groups; waters draining in the granitic region(group 1) and the limestone region(group 2). This classification was also confirmed by statistical examination through cluster analysis, and the tunnel seepage waters collected at the same site appear to be included in group 1 and 2 by their sampling period, respectively. According to factor analysis, the waters of group 1 art mainly represented by the weathering of plagioclase to kaolinite and those of group 2 are characterized by the dissolution of calcite. Different properties of the tunnel seepage waters are thought to be resulted from the effective waterproofing processes conducted during the sampling interval to the surface and subsurface leakage zones at the granitic region, which contributed to the change of groundwater flow system. However both the tunnel seepage waters seem to have thermodynamically interacted with rock-forming minerals in their wallrocks. The mixing ratio of the waters from two groups and water-rock interactions are evaluated quantitatively for the tunnel seepage waters through the mass balance approach, and the results are identical with the previous conclusions in this study.

  • PDF