DOI QR코드

DOI QR Code

Subsurface Characterization using the Simultaneous Search based Pilot Point Method (SSBM) in Various Data Applications

지하수 흐름특성 분석을 위한 동시 검색기반 파일럿 포인트 방법 적용 - 다양한 데이터 활용 기반

  • 정용 (원광대학교 토목환경공학과)
  • Received : 2019.08.09
  • Accepted : 2019.08.27
  • Published : 2019.10.01

Abstract

Pilot Point Method (PPM) is one of the popular methods to search hydraulic conductivities in the inverse method using groundwater flow equations. In this study, the Simultaneous Search based Pilot Point Method (SSBM) was applied with diverse information (e.g. hydraulic heads and/or tracer concentration) applications over previously developed sensitivity based Pilot Point Method (e.g. D-optimality based Pilot Point Method: DBM). In the case of DBM, due to the minimized the variance size, tracer concentration can be recognized as a tool to control the searching space of hydraulic conductivities. SSBM reduced the procedure of hydraulic conductivity searching, though it produced more variance for exploring hydraulic conductivities. In addition, SSBM was dependent on the initial hydraulic conductivity values for search finalized hydraulic conductivities. When tracer concentration was applied, searching hydraulic conductivities was more preferable than only when hydraulic head was applied. Applications of various data for searching hydraulic conductivities is recommended as a more efficient way.

지하수의 흐름의 특성에 가장 큰 영향을 미치는 투수계수 정보에 대한 탁월한 추정 방법으로 파일럿 포인트 방법(Pilot Point Method: PPM)이 있다. 이는 투수계수 정보를 비교적 풍부한 측정자료(e.g. 지하수 수두 정보)를 활용하여 얻어내는 역함수 방법의 하나이다. 본 연구는 지하수 수두 정보에 추적자 정보를 활용하여 기 개발된 민감도 분석을 활용한 파일럿 포인트 방법(D-optimality based Pilot Point Method: DBM)과 동시 검색기반 파일럿 포인트 방법(Simultaneous Search based Pilot Point Method: SSBM)의 활용성을 검증하였다. 그 결과 지하수 수두 정보만을 활용하는 것에 비해 추적자 정보를 활용하는 것이 SSBM이나 DBM 모두 투수계수를 찾는 편차를 축소시켰다. 이는 동일한 조건하에 추적자 농도 정보가 투수계수를 찾는 범위를 한정할 수 있음을 보이는 한 예라고 할 수 있다. SSBM의 경우 민감도 분석이 없어 투수계수를 찾는 절차는 감소시켰지만 DBM에 비해 투수계수를 찾는 편차가 늘어나는 경향을 보였으며 초기 투수계수의 값에 의해 투수계수를 찾는데 영향을 받음을 보였다. 본 연구를 통해 동시 검색기반 파이럿 포인트 방법으로 지하수 수두와 추적자 농도를 활용하는 것이 투수계수를 추정하는 데 적합한 것으로 사료된다.

Keywords

References

  1. Alcolea, A., Carrera, J. and Medina, A. (2006). "Pilot points method incorporating prior information for solving the groundwater flow inverse problem." Advances in water resources, vol. 29, pp. 1678-1689. https://doi.org/10.1016/j.advwatres.2005.12.009
  2. Anderson, M. P., Woessner, W. W. and Hunt, R. J. (2015). Applied groundwater modeling: Simulation of flow and advective transport, Academic press. California, USA.
  3. Baalousha, H. M., Fahs, M., Ramasomanana, F. and Younes, A. (2019). "Effect of pilot-points location on model calibration: application to the northern karst aquifer of qatar." Water, Vol. 11, No. 4, pp. 1-18
  4. Certes, C. and de Marsily, G. (1991). "Application of the pilot point method to the identification of aquifer transmissivities." Advances in Water Resources, Vol. 14, No. 5. pp. 284-300. https://doi.org/10.1016/0309-1708(91)90040-U
  5. Cooley, R. L. (2000). "An analysis of the pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields." Water Resources Research, Vol. 36, No. 4, pp. 1159-1163. https://doi.org/10.1029/2000WR900008
  6. de Marsily, G., Lavedan, G., Boucher, M. and Fasanino, G. (1984). "Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model." Geostatistics for Natural Resources Characterization, Part, 2, D. Reidel Publishing Company. Boston, USA.
  7. Doherty, J. (2003). "Ground water model calibration using pilot points and regularization." Ground Water, Vol. 41, No. 2, pp. 170-177. https://doi.org/10.1111/j.1745-6584.2003.tb02580.x
  8. Doherty, J. (2019). PEST model-independent parameter estimation user manual part I: PEST, SENSAN and Global Optimiser. Watermark Numerical Computing Brisbane, Australia, p. 393.
  9. Fahs, H., Hayek, M., Fahs, M. and Younes, A. (2014). "An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media." Advances in Water Resources, Vol. 63, pp. 179-193. https://doi.org/10.1016/j.advwatres.2013.11.008
  10. Fienen, M. N., Muffels, C. T. and Hunt, R. J. (2009). "On constraining pilot point calibration with regularization in PEST." Groundwater, Vol. 47, No. 6, pp. 835-844. https://doi.org/10.1111/j.1745-6584.2009.00579.x
  11. Gomez-Hernanez, J. J., Sahuquillo A. and Capilla J. (1997). "Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data-I. Theory." Journal of Hydrology, Vol. 203, No. 1-4, pp. 162-174. https://doi.org/10.1016/S0022-1694(97)00098-X
  12. Hendricks-Franssen, H. J. (2000). Inverse stochastic modeling of groundwater flow and mass transport. Ph.D. dissertation, Universidad Politecnica de Valencia, Spain.
  13. Jung, Y., Mahinthakumar, G. and Ranjithan, R. (2013). "Development of a simultaneous search-based pilot point method for subsurface characterization." Stochastic Environmental Research and Risk Assessment, Vol. 27, No. 8, pp. 2003-2013. https://doi.org/10.1007/s00477-013-0734-x
  14. Jung, Y., Ranjithan, R. S. and Mahinthakumar, G. (2011). "Subsurface characterization using a D-optimality based pilot point method." Journal of Hydroinformatics, Vol. 13, No. 4, pp. 775-793. https://doi.org/10.2166/hydro.2010.111
  15. Klaas, D. K. and Imteaz, M. A. (2017). "Investigating the impact of the properties of pilot points on calibration of groundwater models: case study of a karst catchment in Rote Island, Indonesia." Hydrogeology Journal, Vol. 25, No. 6, pp. 1703-1719. https://doi.org/10.1007/s10040-017-1590-4
  16. LaVenue, A. M., RamaRao, B. S., De Marsily, G. and Marietta, M. G. (1995). "Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields Application." Vol. 31, No. 3, pp. 495-516. https://doi.org/10.1029/94WR02259
  17. Rajabi, M. M., Ataie-Ashtiani, B. and Simmons, C. T. (2018). "Model-data interaction in groundwater studies: Review of methods, applications and future directions." Journal of Hydrology, Vol. 567, pp. 457-477. https://doi.org/10.1016/j.jhydrol.2018.09.053
  18. RamaRao, B. S., LaVenue, A. M., De Marsily, G. and Marietta, M. G. (1995). "Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments." Water Resources Research, Vol. 31, No. 3, pp. 475-493. https://doi.org/10.1029/94WR02258