• Title/Summary/Keyword: Subsurface drainage

Search Result 73, Processing Time 0.027 seconds

Development of Prediction Method of Desalination on a Saturated Soil in Saemanguem Reclaimed Area (새만금 간척지 포화상태 흙의 제염예측기법 개발)

  • Seo, Dong-Uk;Kim, Hyeon-Tae;Chang, Pyoung-Wuck;Lee, Sang-Hun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.29-34
    • /
    • 2009
  • A series of laboratory model tests and numerical analysis is performed to analyze characteristics of desalination and to predict a period of desalination for subsurface saturated soil in Saemanguem reclaimed area. The results show that quantity of desalination is small as salinity of water is increased. On the contrary, quantity of desalination is increased as salinity of soil is high. In order to decrease the salinity to 10 % of initial salinity of soil at depth of 2 m, it takes 11 years to desalinate the soil 50 m away from drainage ditch. For soil at depth of 1.5 m only 1 year to desalinate the soil near drainage ditch. Also, water head of 80 cm is required to desalinate to 10 % of initial salinity for 60 cm thick soil. Because the following results is based upon the Saemangeum soil, an application of this result for another field will be cautious. More research will be required on this matter.

Evaluation of Remediation of Contaminated Soil Using PVDs (연직배수재를 이용한 오염도턍복원 특성 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun;Roh, Jeong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1400-1407
    • /
    • 2005
  • There are a number of approaches to in situ remediation that are used at contaminated sites for removing contaminants from the contaminated zone without excavating the soil. These include soil flushing, dual phase extraction, and soil vapor extraction. Of these techniques, soil flushing is the focus of the investigation in this paper. The concept of using prefabricated vertical drains(PVDs) for remediation of contaminated sites with fine-grained soils is examined. The PVD system is used to shorten the drainage path or the groundwater flow and promote subsurface liquid movement expediting the soil flushing process. The use of PVDs in the current state of practice has been limited to soil improvement. The use of PVDs under vacuum conditions is investigated using sample soil consisting of silty sand.

  • PDF

Vacuum distribution with depth in vertical drains and soil during preloading

  • Khan, Abdul Qudoos;Mesri, G.
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • The vacuum consolidation method which was proposed by Kjellman in 1952 has been studied extensively and used successfully since early 1980 throughout the world, especially in East and Southeast Asia. Despite the increased successful use, different opinions still exist, especially in connection to distribution of vacuum with depth and time in vertical drains and in soil during preloading of soft ground. Porewater pressure measurements from actual cases of field vacuum and vacuum-fill preloading as well as laboratory studies have been examined. It is concluded that (a) a vacuum magnitude equal to that in the drainage blanket remains constant with depth and time within the vertical drains, (b) as expected, vacuum does not develop at the same rate within the soil at different depths; however, under ideal conditions vacuum is expected to become constant with depth in soil after the end of primary consolidation, and (c) there exists a possibility of internal leakage in vacuum intensity at some sublayers of a soft clay and silt deposit. A case history of vacuum loading with sufficient subsurface information is analyzed using the ILLICON procedure.

Analysis of Electrical Conductivity During Desalinization of Reclaimed Tidelands (간척지토양의 제염과정중 전기전도도 분석(농지조성 및 농어촌정비))

  • 구자웅;최진규;손재권;조경훈
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.54-65
    • /
    • 2000
  • This study was performed to analyze the changes of electrical conductivity with increasement of water requirements for desalinization in reclaimed tidelands and to obtain the basic data for developing prediction techniques of desalinization to be applicable in the beginning of tideland reclamation. Two different desalinization experiments were conducted through the leaching method by subsurface drainage and the rinsing method by surface darainage, using the samples of silt soil and silt loam soil collected in 5 units of tideland reclamation projects. Regression equations were obtained in order to investigate the changes of electrical conductivity during the desalinization of reclaimed tidelands and to estimate water requirements for desalinization.

  • PDF

Study on Nutrient Loss in Surface Runoff by Rainfall from Slurrigated Area Using Digested Animal Manure (부숙처리된 축산분뇨슬러리 살포지역의 강우에 의한 영양물질 유출에 관한 연구)

  • ;;Osamu Tsuji;Fujio Tsuchiya
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.43-51
    • /
    • 1997
  • The nutrients runoff including nitrogen and phosphorous was investigated to find out the characteristics of nutrient discharge from the slurrigated area using digested animal manure. The results obtained are summarized as follows: 1.The concentrations of T-N, $NH_4$- N, EC, T- P and Cl- were high in flood runoff. 2.The concentration of nutrients by the surface runoff, except for $NO_3$-N, showed a tendency of increasing when the period of dry days before the rain fall was long. And the concentration of N$NO_3$-N increased in the inflow section where subsurface drainage flowed in. 3.The quality of water was generally influenced by the discharge of water quantity from slurrigated area. However the runoff concentration influenced the water quality when it was high enough. 4.To reduce loss of the nutrients and improve the fertilization effect, it is not recommended to apply slurry in rainy season.

  • PDF

Application of TOPMODEL at Artificially Drained Watershed (인공배수유역에서의 TOPMODEL의 적용)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.539-548
    • /
    • 1997
  • A physically based model for rainfall runoff simulation in agricultural watershed equipped with tile drains is presented. This model is developed from the TOPMODEL which is based on the detailed topographic information provided by Digital Elevation Model (DEM). Nine possible flow generation scenarios in the tile drained basin are suggested and used in the development of the model. The model can identify the portions of the hydrograph resulting from tile flow, subsurface flow and surface flow. The performance of the model is assessed through a calibration and validation process. The results of the analysis show that the model describes the physical system well and provides a better insight into the hillslope hydrology of agricultural watersheds with tile drainage.

  • PDF

A Study on the Subsurface Drainage of Artesian Groundwater in Wetted Paddy for the Mechanized Farming to be Prepared Against Uruguay Round (UR대비에 도움을 줄 논의 기계화재배를 위한 논의 용수처리에 관한 연구)

  • Hwang, Eun;Hur, Nam-Jo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 1992
  • A Study was made to improve soil and water temperature and mechanized farming for a wetted paddy under the influence of artesian groundwater located at Samcheon-Dong, Chuncheon City, Kangweon Province. Half perforated PVC drainage pipes were installed in the test paddy to observe temperature change of water and soil. The temperature of the water in the paddy and soil itself raised significantly after the installation of the half perforated PVC pipes. A subsequent improvement of growth and yield of rice on the paddy was achieved. Harvesting operation was also improved with firm ground condition so that cutting and threshing could be done simultaneously within the paddy plot. Following results were obtained from the study. 1.Temperature of the water in a paddy under the influence of artesian groundwater was not changed notably although air temperature was fluctuated during the crop period. Soil temperature was mostly affected by the artesian groundwater. However, the half perforated PVC pipe drainage system made it possible to raise temperature of water and soil remarkably up to the level of optimum farming. 2.Total precipitation was 534.Omm during the crop period of the paddy for 118 days from May 26 to September 20 in 1992. Due to heavy rainfalls of 105.6mm and 109.8mm occurred on August 7 and August 27.1992, respectively, the rate of the artesian groundwater increased to 35 litter per minute with two to three days of time lag. 3.Average rate of the artesian groundwater was 28 litter per minute from the one year of observation. The rate varied by 0.7 to 1.3 times of average during the observation period. Peak rate of the artesian groundwater decreased to 14.5 litter per minute when daily precipitation maintained at the amount of 20 to 30mm for a long time period. Contrarily, it showed a tendency to increase to 35 to 40 litter per minute when heavier precipitation of 50 to l00mm occurred in a short period of three to five days. 4.Growth and yield of Yemyung variety of rice planted on the paddy that was facilitated with a drainage system with half perforated PVC pipes were confirmed at a normal level, while paddy without this perporated drainage system showed abnormal growth with low yield.

  • PDF

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

Development of Soil Moisture Controlling System for Smart Irrigation System (스마트 관개 시스템을 위한 토양 수분 제어시스템 개발)

  • Kim, Jongsoon;Choi, Won-Sik;Jung, Ki-Yeol;Lee, Sanghun;Park, Jong Min;Kwon, Soon Gu;Kim, Dong-Hyun;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.