• Title/Summary/Keyword: Subsurface Scattering

Search Result 15, Processing Time 0.023 seconds

Evaluation of Abrasive Wear Face Using SAW (표면탄성파를 이용한 마모 표면부의 평가)

  • Kwon, Sung-D.;Yoon, Seok-S.;Song, Sung-J.;Lee, Young-Z.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • The frequency dependency of the Rayleigh surface wave was investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the abrasion specimens, which was explained in view of the residual stress distribution. The peak intensity of the backward radiation profile decreased and the right half width of the profile increased with an increase of the variational rate of residual stress for the scuffing specimen. The peak intensity was also affected by the surface wave scattering during the propagation around the micro-damages. The peak angle might depend on not only the amount of residual stress but also the micro-structure. The result observed in this study demonstrates the high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the subsurface gradients of materials.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

An Application of loop-loop EM Method for Geotechnical Survey (지반조사를 위한 loop-loop 전자탐사 기법의 적용)

  • You Jin-Sang;Song Yoonho;Seo1 Soon-Jee;Song Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 2001
  • Loop-loop electromagnetic (EM) survey in frequency domain has been carried out in order to provide basic solution to geotechnical applications. Source and receiver configuration may be horizontal co-planar (HCP) and/or vertical co-planar (VCP). Three quadrature components of mutual impedance ratio for each configuration are used to construct the subsurface image. For the purpose of obtaining the model response and validating the reasonable performance of the inversion, we obtained each responses of two-layered and three-layered earth models and two-dimensional (2-D) isolated anomalous body. The response of 2-D isolated anomalous body has been calculated using extended Born approximation for the solution of 2.5-D integral equation describing EM scattering problem. As a result of the least-squares inversion with variable Lagrangian multiplier, we could construct more resolvable image from HCP data than VCP data. Furthermore, joint inversion of HCP and VCP data made better stability and resolution of the inversion. Resistivity values, however, did not exactly match the true ones. Loop-loop EM field data was obtained with EM34-3XL system manufactured by Geonics Ltd. (Canada). Electrical resistivity survey was conducted on the same line for the comparison in advance. Since the constructed image from loop-loop EM data by 2-D inversion algorithm showed almost similar resistivity distribution to that from electrical resistivity one, we expect the developed 2.5-D loop-loop EM inversion program can be applied for the reconnaissance site survey.

  • PDF

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF