• 제목/요약/키워드: Substructuring

검색결과 102건 처리시간 0.025초

횡력을 받는 합성 쉘 구조의 해석 (ANALYSIS OF MULTPLE SHELL STRUCTURES SUBJECTED TO LATERAL LOADS)

  • 이평수
    • 전산구조공학
    • /
    • 제2권2호
    • /
    • pp.73-83
    • /
    • 1989
  • 2차원적인 유한요소들을 각 절점에서 6개의 자요도를 갖는 3차원인 입체로 결합함으로써, 횡하중을 받고 있는 합성 쉘 구조를 해석할 수 있는 프로그램 [MSSLL]을 개발하였다. 전체 구조물이 여러개의 반복되는 Substructure들로 이루어졌을 때에는, 인력의 소모를 극소화하고 계산시간을 절약할 수 있도록 해석과정에 Substructuring 기법을 본 프로그램에 도입하였다. 프로그램의 신뢰도를 확인하기 위하여 본 프로그램에 의한 해석결과와 다른 방법에 의한 결과를 비교분석 하였으며, 지진력을 받고 있는 8개의 개별 원추들로 구성된 쉘 구조의 거동에 대한 높이-경간비의 영향을 규명하기 위하여 변수연구를 수행하였다.

  • PDF

Ultimate response of bionics shells

  • Tesar, Alexander;Minar, Michal
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.135-150
    • /
    • 2002
  • Numerical analysis of ultimate behaviour of thin bionics shells is treated in present paper. Interactive conditions in resonance and stability ultimate response are considered. Numerical treatment of nonlinear problems appearing is made using the updated Lagrangian formulation of motion. Each step of the iteration approaches the solution of linear problem and the feasibility of parallel processing FETM-technique with adaptive mesh refinement and substructuring for the analysis of ultimate action of thin bionics shells is established. Some numerical results are submitted in order to demonstrate the efficiency of the procedures suggested.

다단계 혼성근사화에 기초한 대형구조계의 설계최적화 (Design Optimization of Large Scale Structural Systems based on Multilevel Hybrid Approximation)

  • 김경일;박종회;황진하
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 2002
  • A new optimization procedure with approximate reanalysis module, using the staged hybrid methods with substructuring, is proposed in is study. In this procedure, displacements are calculated with two step mixed procedures. First step is to introduce the conservative approximation, which is a hybrid form of the linear and reciprocal approximation, as local approximation. In the next step, it is combined with the global approximation by reduced basis approach. The quality of reanalyzed quantities can be greatly improved through these staged hybrid approximations, specially for large changes in the design. Overall procedures are based on substructuring scheme. Several numerical examples illustrate the validity and effectiveness of the proposed methods.

  • PDF

정적응축기법을 이용한 부분재해석 알고리즘 (Partial Reanalysis Algorithm with Static Condensation)

  • 김치경;최동인
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.175-181
    • /
    • 2006
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity. The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

  • PDF

Aggregation multigrid method for schur complement system in FE analysis of continuum elements

  • Ko, Jin-Hwan;Lee, Byung Chai
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.467-480
    • /
    • 2008
  • An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics. Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In this work, an extended application of AMM for solving Schur Complement system in the FE analysis of continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases, which is a challenging problem for an iterative solver, is studied. The proposed method is developed by combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the full-size matrix of an original system and the multigrid method gives near-optimal convergence. This method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show better performance by the proposed method as compared to the preconditioned conjugate gradient method. The smaller computational cost for the iterative procedure of the proposed method gives a good alternative to a direct solver in large systems with multiple load cases.

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.

부구조법을 이용한 불규칙 기초가진을 받는 구조물의 시간 이력 해석 (Time History Analysis of Sturctures Subjected to Random Base Excitation by a Substructuring Method)

  • 이태원
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.86-91
    • /
    • 2022
  • The mechanical structures mounted on vehicles or aircrafts are subject to random accelerations, such as earthquakes, at the base, and their responses have been calculated through spectrum analysis. However, this method poses a challenge during the synthesis of the responses owing to the loss of the vibration phase. It is necessary to evaluate the time history results to obtain the exact responses; therefore, an efficient technique is proposed to solve this issue. The present technique involves constructing a superelement using the sub-structuring method and finding solutions for this superelement. The finite element model (FEM) was substituted by a superelement, which was simplified into one element with selected nodes. Comparing the numerical results of the superelement with the time history responses for the original finite element model, the two solutions agree well despite the fact that the computation time of the proposed technique has been greatly shortened.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

유동계산을 위한 다단계 부분 구조법에 대한 연구 (A STUDY ON A MULTI-LEVEL SUBSTRUCTURING METHOD FOR COMPUTATIONS OF FLUID FLOW)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2005
  • Substructuring methods are often used in finite element structural analyses. In this study a multi-level substructuring(MLSS) algorithm is developed and proposed as a possible candidate for finite element fluid solvers. The present algorithm consists of four stages such as a gathering, a condensing, a solving and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At the highest level, each sub-domain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each sub-domain has been replaced by a sequential static condensation of gathered element matrices. The global algebraic system arising from the assembly of each sub-domain matrices is solved using a well-known iterative solver such as the conjugare gradient(CG) or the conjugate gradient squared(CGS) method. A time comparison with CG has been performed on a 2-D Poisson problem. With one domain the computing time by MLSS is comparable with that by CG up to about 260,000 d.o.f. For 263,169 d.o.f using 8 x 8 sub-domains, the time by MLSS is reduced to a value less than $30\%$ of that by CG. The lid-driven cavity problem has been solved for Re = 3200 using the element interpolation degree(Deg.) up to cubic. in this case, preconditioning techniques usually accompanied by iterative solvers are not needed. Finite element formulation for the incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et al.[9].