• 제목/요약/키워드: Substructure of bridge

검색결과 114건 처리시간 0.03초

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.

Gap comparison between single crown and three-unit bridge zirconia substructures

  • Anunmana, Chuchai;Charoenchitt, Masnisa;Asvanund, Chanavut
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.253-258
    • /
    • 2014
  • PURPOSE. To compare marginal and internal gaps of zirconia substructure of single crowns with those of three-unit fixed dental prostheses. MATERIALS AND METHODS. Standardized Co-Cr alloy simulated second premolar and second molar abutments were fabricated and subsequently duplicated into type-III dental stone for working casts. After that, all zirconia substructures were made using $Lava^{TM}$ system. Marginal and internal gaps were measured in 2 planes (mesial-distal plane and buccal-palatal plane) at 5 locations: marginal opening (MO), chamfer area (CA), axial wall (AW), cusp tip (CT) and mid-occlusal (OA) using Replica technique. RESULTS. There were significant differences between gaps at all locations. The $mean{\pm}SD$ of marginal gap in premolar was $43.6{\pm}0.4{\mu}m$ and $46.5{\pm}0.5{\mu}m$ for single crown and 3-unit bridge substructure respectively. For molar substructure the $mean{\pm}SD$ of marginal gap was $48.5{\pm}0.4{\mu}m$ and $52.6{\pm}0.4{\mu}m$ for single crown and 3-unit bridge respectively. The largest gaps were found at the occlusal area, which was $150.5{\pm}0.5{\mu}m$ and $154.5{\pm}0.4{\mu}m$ for single and 3-unit bridge premolar substructures respectively and $146.5{\pm}0.4{\mu}m$ and $211.5{\pm}0.4{\mu}m$ for single and 3-unit bridge molar substructure respectively. CONCLUSION. Independent-samples t-test showed significant differences of gap in zirconia substructure between single crowns and three-unit bridge (P<.001). Therefore, the span length has the effect on the fit of zirconia substructure that is fabricated using CAD/CAM technique especially at the occlusal area.

원형강 파일이 횡방향 상호 연결된 가설교량의 안전성 평가 (Safety Evaluation of a Bridge Using Round Piles Connected Laterally to Each Other)

  • 김용곤;백신원
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.98-106
    • /
    • 2006
  • The substructure of temporary bridges used during the construction period of main bridges needs to be simple and strong at the same time so that it doesn't block running water. When the water flow is hindered by sub-structure of the bridges, as it happens when H beams with bracing are used, either the water floods or the bridge gets damaged. Therefore, using round beams for the substructure and connect them together is a preventive choice considering the intensive raining in the summer. The bridges using round beams for the substructure have also benefited by fast construction because of fewer bracing and in-situ welding. Because the round-pile-connecting method is relatively new, the safety evaluation of the constructed bridge is an essential procedure before being used in the field. The field evaluation of a bridge including the vehicle loading test and moving load analysis has been conducted and the results showed the safety requirement is satisfied.

현행설계법 및 하중저항계수설계법에 의한 완전 조립식 교량 하부구조의 설계결과 비교 (Design Comparison of Totally Prefabricated Bridge Substructure Systems Designed by Present Design and LRFD Methods)

  • 김태훈;김영진;신현목
    • 한국지진공학회논문집
    • /
    • 제15권2호
    • /
    • pp.11-22
    • /
    • 2011
  • 개발된 완전 조립식 교량 하부구조에 대한 설계비교와 비선형 해석을 수행하였다. 조립식 교량 하부구조는 현행설계법과 하중저항계수설계법으로 설계하였다. 설계시에는 현 도로교설계기준에 규정된 DB-24 및 DL-24 설계활하중을 적용하였다. 이 연구는 비선형 유한요소해석을 통해서 완전 조립식 교량 하부구조의 현행 설계법인 KHBD (2005)와 AASHTO-LRFD (2007)를 평가하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다.

불확실성을 고려한 교량 하부구조 최적설계 (Optimal Design of Bridge Substructure Considering Uncertainty)

  • 박장호;신영석;신욱범;이재우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

지반세굴 유형에 따른 교량 하부구조의 해석적 거동 예측 (Evaluation of Performance Simulation for Bridge Substructure Due to Types of Scour)

  • 정우영;윤찬영;이일화
    • 한국지반환경공학회 논문집
    • /
    • 제14권3호
    • /
    • pp.5-11
    • /
    • 2013
  • 본 연구는 홍수 시 교량하부에서 발생되는 세굴에 의한 문제점을 조사하기 위한 연구로서 실제 현장에서 실험에 의하여 규명이 쉽지 않은 세굴과 관련된 교량하부구조 거동에 대한 해석적 연구이다. 본 연구에서 제시된 해석모델의 경우 도로교 시방규정에서 제시한 표준하부구조 단면을 기준으로 세굴에 따른 3축 지반지지력 표현 및 손실이 가능하도록 유한요소 모델링을 수행하였고 상용유한요소해석 프로그램인 ANSYS를 이용하여 해석을 수행하였다. 고려된 하중조건으로는 시간에 따른 유량변화를 단계적으로 고려하였으며 다양한 형태의 세굴조건과 지반지지력 변화에 대하여 교량하부구조 거동을 조사하였다. 최종적으로 교량하부구조의 거동은 세굴발생 면적 및 형태에 따라서 다양한 결과들을 보여주었으며, 이들 결과들은 향후 교량하부구조 세굴보호공 설계기준 마련을 위한 기초자료로 유용하게 활용될 수 있을 것이다.

Effect of a two bearing lines deck on the bridge substructure

  • Shaker, Fatemeh;Rahai, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.117-129
    • /
    • 2022
  • This research evaluated the different types of deck to pier connections effects (one or two elastomeric bearing lines and rigid) on a concrete bridges. Three-dimensional bridge models behavior with different deck to pier connections and different distances of two bearing lines were studied under the service load. Also, the detailed connection system with two elastomeric bearing lines was modeled to evaluate the effect of changing distance between two-lines. Results indicated that the proper location of elastomeric bearings has a major impact on the transferring forces to the substructure. Double elastomeric bearing lines have a behavior between one line and rigid connections. Transferring bending moment to the substructure in two-lines is more than the corresponding value of the one line. Moreover, an increase in the distance of two-lines lead to a significant increase in the rotational stiffness of the connection, and an analytical solution was investigated for their relation. In fact, the semi-rigidity effect of this connection and its change due to the distance of bearings should be considered in the design process.

Parametric identification of a cable-stayed bridge using least square estimation with substructure approach

  • Huang, Hongwei;Yang, Yaohua;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.425-445
    • /
    • 2015
  • Parametric identification of structures is one of the important aspects of structural health monitoring. Most of the techniques available in the literature have been proved to be effective for structures with small degree of freedoms. However, the problem becomes challenging when the structure system is large, such as bridge structures. Therefore, it is highly desirable to develop parametric identification methods that are applicable to complex structures. In this paper, the LSE based techniques will be combined with the substructure approach for identifying the parameters of a cable-stayed bridge with large degree of freedoms. Numerical analysis has been carried out for substructures extracted from the 2-dimentional (2D) finite element model of a cable-stayed bridge. Only vertical white noise excitations are applied to the structure, and two different cases are considered where the structural damping is not included or included. Simulation results demonstrate that the proposed approach is capable of identifying the structural parameters with high accuracy without measurement noises.

응답수정계수와 일반교량의 붕괴방지설계 (Response Modification Factors and No Collapse Design of Typical Bridges)

  • 국승규
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.185-189
    • /
    • 2017
  • 일반교량 내진설계의 목적은 지진발생 직후에 긴급차량의 통과를 허용하도록 하는 '붕괴방지설계'의 수행이다. 도로교설계기준은 연성구조를 구성하여 '붕괴방지설계'를 수행하는 규정을 제시하고 있으며 이 과정에서 연결부분과 하부구조에 적용하는 응답수정계수가 핵심적인 역할을 한다. 하부구조 응답수정계수의 경우 도로교설계기준은 연성과 여용력을 고려한 계수인 반면 AASHTO LRFD 교량설계기준은 교량의 중요도를 핵심, 중요 및 일반으로 구분한 인위적인 인자를 추가로 반영한 계수를 제시하고 있다. 이 연구에서는 강재받침과 철근콘크리트 교각기둥으로 구성된 일반교량을 선정하고 도로교설계기준의 설계조건과 함께 하부구조 응답수정계수를 차등 적용하는 경우의 설계결과를 비교, 검토하였으며 이로부터 하부구조 응답수정계수의 차등 적용 시 설계기준에 요구되는 보완사항을 제시하였다.

Numerical studies on the effect of measurement noises on the online parametric identification of a cable-stayed bridge

  • Yang, Yaohua;Huang, Hongwei;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.259-268
    • /
    • 2017
  • System identification of structures is one of the important aspects of structural health monitoring. The accuracy and efficiency of identification results is affected severely by measurement noises, especially when the structure system is large, such as bridge structures, and when online system identification is required. In this paper, the least square estimation (LSE) method is used combined with the substructure approach for identifying structural parameters of a cable-stay bridge with large degree of freedoms online. Numerical analysis is carried out by first dividing the bridge structure into smaller substructures and then estimates the parameters of each substructure online using LSE method. Simulation results demonstrate that the proposed approach is capable of identifying structural parameters, however, the accuracy and efficiency of identification results depend highly on the noise sensitivities of loading region, loading pattern as well as element size.