• Title/Summary/Keyword: Substrate specificity

Search Result 380, Processing Time 0.025 seconds

Molecular Cloning and Expression of Cellulase of Gene of Pseudomonas sp. in Escherichia coli (Pseudomonas sp.의 Cellulase 유전자의 대장균에의 클로닝 및 발현)

  • 정영철;김양우;노종수;성낙계;강신권
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.633-639
    • /
    • 1990
  • The genes for cellulases of Pseudomonas sp. LBC505 and CYC10, potent cellulase complex-producing strains, were cloned in Escherichia coli with pUC19. Recombinant plasmids pLCl and pLC2 were isolated from transformants producing cellulase by Congo red staining, and their genes cloned were 0.7 kb and 4.6 kb HindIII fragments, respectively. The inserts of pLCl and pLC2 were hybridized to chromosomal DNAs digested with HindIII from Pseudomona~ sp. LBC505 and CYC10, respectively. Immunodiffusion assays revealed that pLC1-and pLC2-encoded cellulase showed similarity with that of host strains. About 24% of cellulase activity was observed in the extracellular fraction of E. coli carrying pLC1, and its activity was higher about 1.4 times than that of LBC505. The enzymatic properties of pLC1 and pLC2 encoded cellulase were the same as those of cellulase from host strains. HPLC analysis and substrate specificity showed that cellulases were the same as those of cellulase from host strains. HPLC analysis and substrate specificity showed that cellulases cloned were endocellulase.

  • PDF

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF

Purification and Characterization of Polyphenol Oxidase in Sweet Potato (Ipomoea batatas) (고구마 Polyphenol Oxidase의 정제 및 특성)

  • Chung, Soo-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.348-357
    • /
    • 1988
  • The present work was undertaken to investigated the purification and characterization of polyphenol oxidase (PPO ; EC 1.10.3.1) in sweet potato, particularly the number of PPO isozymes, and PPO properties such as pH optimum, heat stability, substrate specificity, kinetics, and inhibitor studies. The purification achieved was 23.1 fold from crude extract with a yield of 41.5%. Eight PPO isozymes and twelve PPO isozymes were detected by disc polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The specific activity of each isozyme separated by isoelectric focusing was in the range of $6,000{\sim}46,700U/mg$. This enzyme was sweet below $65^{\circ}C$ and the pH optimum of PPO occurred at 6.0-6.5. The substrate specificity of sweet potato PPO showed the high affinity toward the odiphenolic compounds. Km and Vmax for catechol were found to be 6.7 mM and $20{\triangle}A/min$, me protein, respectively. Inhibitor studies indicated that dithiothreitol was the most potent among the inhibitors used in the present work.

  • PDF

Alteration of Substrate Specificity by Common Variants, E158K/E308G and V257M, in Human Hepatic Drug-metabolizing Enzyme, Flavin-containing Monooxygenase 3

  • Lee, Jung-Kyu;Kang, Ju-Hee;Cha, Young-Nam;Chung, Woon-Gye;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • Our earlier studies found a significant correlation between the activities of ranitidine N-oxidation catalyzed by hepatic flavin-containing monooxygenase (FMO) and the presence of mutations in exon 4 (E158K) and exon 7 (E308G) of the FMO3 gene in Korean volunteers. However, caffeine N-1 demethylation (which is also partially catalyzed by FMO) was not significantly correlated with these FMO3 mutations. In this study, we examined another common mutation (V257M) in exon 6 of FMO3 gene. The V257M variant, which is caused by a point mutation (G769A), was commonly observed (13.21% allele frequency) in our subjects (n=159). This point mutation causes a substitution of $Val^{257}$ to $Met^{257}$, with transformation of the secondary structure. The presence of this mutant allele correlated significantly with a reduction in caffeine N-1-demethylating activity, but was not correlated with the activity of N-oxidation of ranitidine. In a family study, the low FMO activity observed in a person heterozygous for a nonsense mutation in exon 4 (G148X) and heterozygous for missense mutation in exon 6 (V257M) of FMO3 was attributed to the mutations. Our results suggest that various point mutations in the coding regions of FMO3 may influence FMO3 activity according to the probe substrates of varying chemical structure that correlate with each mutation on the FMO3 gene.

PspAG97A: A Halophilic α-Glucoside Hydrolase with Wide Substrate Specificity from Glycoside Hydrolase Family 97

  • Li, Wei;Fan, Han;He, Chao;Zhang, Xuecheng;Wang, Xiaotang;Yuan, Jing;Fang, Zemin;Fang, Wei;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1933-1942
    • /
    • 2016
  • A novel ${\alpha}-glucoside$ hydrolase (named PspAG97A) from glycoside hydrolase family 97 (GH97) was cloned from the deep-sea bacterium Pseudoalteromonas sp. K8, which was screened from the sediment of Kongsfjorden. Sequence analysis showed that PspAG97A belonged to GH97, and shared 41% sequence identity with the characterized ${\alpha}-glucoside$ BtGH97a. PspAG97A possessed three key catalytically related glutamate residues. Mutation of the glutamate residues indicated that PspAG97A belonged to the inverting subfamily of GH97. PspAG97A showed significant reversibility against changes in salt concentration. It exhibited halophilic ability and improved thermostability in NaCl solution, with maximal activity at 1.0 M NaCl/KCl, and retained more than 80% activity at NaCl concentrations ranging from 0.8 to 2.0 M for over 50 h. Furthermore, PspAG97A hydrolyzed not only ${\alpha}-1,4-glucosidic$ linkage, but also ${\alpha}-1,6-$ and ${\alpha}-1,2-glucosidic$ linkages. Interestingly, PspAG97A possessed high catalytic efficiency for long-chain substrates with ${\alpha}-1,6-linkage$. These characteristics are clearly different from other known ${\alpha}-glucoside$ hydrolases in GH97, implying that PspAG97A is a unique ${\alpha}-glucoside$ hydrolase of GH97.

Purification and Characterization of an Extracellular $\beta$-Glucosidase from Monascus purpureus

  • Daroit, Daniel J.;Simonetti, Aline;Hertz, Plinho F.;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.933-941
    • /
    • 2008
  • An extracellular $\beta$-glucosidase produced by Monascus purpureus NRRL1992 in submerged cultivation was purified by acetone precipitation, gel filtration, and hydrophobic interaction chromatography, resulting in a purification factor of 92-fold. A $2^2$ central-composite design (CCD) was performed to find the best temperature and pH conditions for enzyme activity. Maximum activity was observed in a wide range of temperature and pH values, with optimal conditions set at $50^{\circ}C$ and pH 5.5. The $\beta$-glucosidase showed moderate thermostability, was inhibited by $HgCl_2$, $K_2Cr_O_4$, and $K_2Cr_2O_7$, whereas other reagents including $\beta$-mercaptoethanol, SDS, and EDTA showed no effect. Activity was slightly stimulated by low concentrations of ethanol and methanol. Hydrolysis of p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), cellobiose, salicin, n-octyl-$\beta$-D-glucopyranoside, and maltose indicates that the $\beta$-glucosidase has broad substrate specificity. Apparently, glucosyl residues were removed from the nonreducing end of p-nitrophenyl-$\beta$-D-cellobiose. $\beta$-Glucosidase affinity and hydrolytic efficiency were higher for pNPG, followed by maltose and cellobiose. Glucose and cellobiose competitively inhibited pNPG hydrolysis.

Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

  • Darwesh, Doaa B.;Al-Awthan, Yahya S.;Elfaki, Imadeldin;Habib, Salem A.;Alnour, Tarig M.;Darwish, Ahmed B.;Youssef, Magdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50℃, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates

  • Park, Kyoung-Sook;Yi, So-Yeon;Kim, Un-Lyoung;Lee, Chang-Soo;Chung, Jin-Woong;Chung, Sang-J.;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.911-917
    • /
    • 2009
  • The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

Isolation of Novel Pseudomonas diminuta KAC-1 Strain Producing Glutaryl 7-Aminocephalosporanic Acid Acylase

  • Kim, Dae-Weon;Kang, Sang-Mo;Yoon, Ki-Hong
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.200-205
    • /
    • 1999
  • 7-Aminocephalosporanic acid (7-ACA) is the initial compound in preparation of cephalosporin antibiotics widely used in clinical treatment. Bacteria producing glutaryl 7-ACA acylase, which convert cephalosporin C to 7-ACA, has been screened in soil samples. A bacterial strain exhibiting high glutaryl 7-ACA acylase activity, designated KAC-1, was isolated and identified as a strain of Pseudomonas diminuta by characterizing its morphological and physiological properties. The screening procedures include culturing on enrichment media containing glutaric acid, glutamate, and glutaryl 7-aminocephalosporanic acid as selective carbon sources. To enhance enzyme production, optimal cultivation conditions were investigated. This strain grew optimally at pH 7 to 9 and in temperatures of 20 to 40 C, but acylase production was higher when the strain was grown at 25 C. Glutaric acid, glutamate and glucos also acted as inducers for acylase production. In a jar fermenter culture, P. diminuta KAC-1 produce acylase in a growth-associated manner. The substrate specificity of KAC-1 acylase by cell extract showed that this enzyme had specificity toward glutaryl 7-ACA, glutaryl 7-ADCA, but not cephalosporin C.

  • PDF