• 제목/요약/키워드: Substrate property

검색결과 738건 처리시간 0.039초

New Method of Gas Barrier Coating on Plastic Substrate for Flexible Display

  • Hwang, Hee-Nam;Choi, Jae-Moon;Kim, In-Sun;Park, Jong-Rak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.985-987
    • /
    • 2004
  • A plastic substrate for flexible display is developed. The gas barrier property in the substrate is improved through depositing metal and metal oxide multi layer on plastic film by PVD process. The metal/metal-oxide multiplayer on plastic film shows excellent gas barrier property and optical property.

  • PDF

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

Effects of Hydrophilic Surface Treatment on SUS Substrates by Using Dielectric Barrier Discharge

  • Joa, Sang-Beom;Kang, In-Je;Yang, Jong-Keun;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.458-458
    • /
    • 2012
  • Fuel Cell is used stacking metal or polymer substrate. This hydro property of substrate surface is very important. Usually, surface property is hydrophilic. The surface oxidation of SUS is investigated through plasma treatments with an atmospheric-pressure dielectric barrier discharge (DBD) for increasing hydrophilic property. The plasma process makes an experiment under various operating conditions of the DBD, which operating conditions are treatment time, plasma gas mixture ratio, the plasma source supply frequency. Two kinds of SUS substrate, SUS-304 and SUS 316L, were used. Discharge frequency has a crucial impact on equipment performance and gas treatment. After the plasma treatment of a SUS plate, highly improved wettability was noted. But, when high oxygen supply, the substrate damaged seriously.

  • PDF

Electro-mechanical Property Evaluation of REBCO Coated Conductor Tape with Stainless Steel Substrate

  • Dedicatoria, M.J.;Shin, H.S.;Ha, H.S.;Oh, S.S.;Moon, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.20-23
    • /
    • 2010
  • In this study, the electromechanical property of REBCO coated conductor (CC) tape adopting a stainless steel substrate has been investigated. Sample was subjected to uniaxial tension and measured its mechanical properties at RT and 77 K. $I_c-{\varepsilon}_t$ relations was also studied in which the strain and stress corresponding to the 95% $I_c$ retention and reversible strain limit were measured. In addition, these results were compared to the case of conventional REBCO CC tape adopting a Hastelloy substrate. As a result, by adopting a stainless steel substrate comparable strength and good electromechanical property to Hastelloy one could be achieved.

SINTERED $Al_{2}O_{3}$-TiC SUBSTRATE FOR THIN FILM MAGNETIC HEAD

  • Nakano, Osamu;Hirayama, Takasi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1998년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1998
  • In 1957, the first magnetic disk drive compatible with a movable head was introduced as an external file memory device for computer system. Since then, magnetic disks have been improved by increasing the recording density, which has brought about the development of a high performance thin film magnetic head. The thin film magnetic head has a magnetic circuit on a ceramic substrate using IC technology. The physical property of the substrate material is very important because it influences the tribology of head/disk interface and also manufacturing process of the head. $Al_{2}O_{3}$-TiC ceramics, so called ALTIC, is known to be one of the best substrate materials which satisfies this property requirement. Even though the head is not in direct contact with the disk, frequent instantaneous contacts are unavoidable due to its high rotating speed and the close gap between them. This may cause damage in the magnetic recording media and, thus, it is very important that the magnetic head has a good wear resistance. $Al_{2}O_{3}$-TiC ceramics has an excellent tribological property in head/disk interface. Manufacturing process of thin film head is similar to that of IC, which requires extremely smooth and flat surface of the substrate. The substrate must be readily sliced into the heads without chipping. $Al_{2}O_{3}$-TiC ceramics has excellent machineability and mechanical properties. $Al_{2}O_{3}$-TiC ceramics was first developed at Nippon Tungsten Co. as cutting tool materials in 1968, which was further developed to be used as the substrate materials for thin film head in collaboration with Sumitomo Special Metals Co., Ltd. in 1981. Today, we supply more than 60% of the substrates for thin film head market in the world. In this paper, we would like to present the sintering process of $Al_{2}O_{3}$-TiC ceramics and its property in detail.

  • PDF

Pd 첨가와 기판온도 변화에 따른 퍼말로이 합금박막의 자기특성변화 (Influence of Pd Concentration and Substrate Temperatures on the Magnetic Property in Permalloy Films)

  • 이기영;송오성;윤종승;김경각
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.818-821
    • /
    • 2002
  • We investigated the evolution of magnetic property with varying palladium (Pd) contents and elevating substrate temperatures up to 200 $^{\circ}C$ during dc-sputtering. We observed that saturation magnetization (Ms), remanence and anisotropic magnetoresistance (AMR) ratio decrease with Pd contents in the case of keeping the substrate temperature at 3$0^{\circ}C$. However they increase by adding 2 %Pd, then decrease above 3 %Pd when we keep the substrate temperature at 20$0^{\circ}C$. Coercivity does not change with Pd contents. Our results imply that we may tune the Ms and AMR with Pd contents and substrate temperature in permalloy films.

플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향 (Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films)

  • 김화민;지승훈
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.

Si와 GaAs기판 위에 AIN 박막의 전기적 특성 (Properties Electric of AIN Thin Film on the Si and GaAs Substrate)

  • 박정철;추순남;권정렬;이헌용
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.5-11
    • /
    • 2008
  • To study the effects of $H_2$ gas on AIN insulation thin film, we prepared AIN thin film on Si and GaAs substrate by means of reactive sputtering method using $H_2$ gas as an additives, With treatment conditions of $H_2$ gas AIN thin film shows variable electrical properties such as its crystallization and hysterisis affected to electrical property, As a results, AIN thin film fabricated on Si substrate post-treated with $H_2$ gas for 20 minutes shows much better an insulation property than that of pre-treated, And AIN film treated with $H_2$ gas comparing to non-treated AIN film shows a flat band voltage decreasment. But In GaAs substrate $H_2$ gas does not effect on the flat band voltage.

Effect of substrate bias on electrical property of ZnO films deposited by magnetron sputtering

  • Jin, Hu-Jie;So, Soon-Jin;Park, Choon-Bae
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.302-303
    • /
    • 2008
  • Nominally undoped (intrinsic) ZnO thin films were deposited by magnetron sputtering system with utilization of substrate bias on silicon at $450^{\circ}C$. Oxygen gas was selected as sputtering gas. The deposited thins were evaluated with X-ray diffraction (XRD) for their microstructure analysis and Hall effect in Van der Pauw configuration for their electrical property. The XRD shows that the magnitude and polarity of substrate bias significantly influence the microstructure and electrical properties.

  • PDF

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF