• Title/Summary/Keyword: Substrate heating effect

Search Result 106, Processing Time 0.03 seconds

A Heating Apparatus for Semiconductor Manufacturing using Direct Heating Method (직접 가열 방식을 이용한 반도체 제조용 히팅 장치)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.408-411
    • /
    • 2008
  • As to this research is new structure of the semiconductor substrate heating apparatus. The fast thermoresponsive according to the direct heating structure of the heating plate layer adhering closely to the floor side of a substrate and the fast heat loss minimization can be accomplished. Moreover, the contact area of the sheath heater, which is the heating plate layer built-in heating apparatus, is increased, so that it has more heating valid area. For this, it adheres closely to the substrate, in which the photosensitive film is coated and the heating plate layer, adhering closely to the floor side of a substrate the mica layer which adheres closely to the floor side of the upper heating plate layer in order to minimize an insulation and heat loss, and the lower part of the mica layer and it is comprised of the floor plate layer. The heating plate layer forms the continued groove portion over the floor side whole. The sheath heater for heating a substrate is inserted with the groove portion and the heating plate layer is comprised. It is confirmed that by using the new substrate heating structure, the temperature change of the heating plate against the time is observed. Then, there is the electric power saving effect of about 40% in comparison with the existing method.

Low temperature deposition of LaMnO3 on IBAD-MgO template assisted by plasma (IBAD-MgO 기판상에 플라즈마를 이용한 LaMnO3 저온 증착)

  • Kim, H.S.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Ko, R.K.;Moon, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.1-3
    • /
    • 2012
  • LMO($LaMnO_3$) buffer layer of superconducting coated conductor was deposited on IBAD-MgO template in the plasma atmosphere at $650^{\circ}C$ which is relatively low compared with conventional deposition temperature of more than $800^{\circ}C$. Deposition method of LMO was DC sputtering, and target and deposition chamber were connected to the cathode and anode respectively. When DC voltage was applied between target and chamber, plasma was formed on the surface of target. The tape substrate was located with the distance of 10 cm between target and tape substrate. When anode bias was connected to the tape substrate, electrons were attracted from plasma in target surface to the tape substrate, and only tape substrate was heated by electron bombardment without heating any other zone. The effect of electron bombardment on the surface of substrate was investigated by increasing bias voltage to the substrate. We found out that the sample of electron bombardment had the effect of surface heating and had good texturing at low controlling temperature.

Joule Heating of Metallic Nanowire Random Network for Transparent Heater Applications

  • Pichitpajongkit, Aekachan;Eom, Hyeonjin;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.227-231
    • /
    • 2020
  • Silver nanowire random networks are promising candidates for replacing indium tin oxide (ITO) as transparent and conductive electrodes. They can also be used as transparent heating films with self-cleaning and defogging properties. By virtue of the Joule heating effect, silver nanowire random networks can be heated when voltage bias is applied; however, they are unsuitable for long-term use. In this work, we study the Joule heating of silver nanowire random networks embedded in polymers. Silver nanowire random networks embedded in polymers exhibit breakdown under the application of electric current. Their surface morphological changes indicate that nanoparticle formation may be the main cause of this electrical breakdown. Numerical analyses are used to investigate the temperatures of the silver nanowire and substrate.

Development of the RE indirect-heating LPE furnace and the effect of impurity in YIG film on the MSSW properties

  • Fujino, M.;Fujii, T.;Sakabe, Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.288-291
    • /
    • 2002
  • We developed a new RF indirect-heating LPE furnace. The thermal gradient of our newly developed furnace is less than that of direct heating, and is as gentle as that of the resistance-heating LPE furnace. With this new furnace, the heating and/or cooling is faster than that of the resistance-heating furnace. Impurity-doped YIG film was grown from a $PbO-B_{2}O_{3}$, based flux on a (111) GGG substrate. To study the effect of the impurities on the MSSW threshold power and the saturation response time, we used two microstrip lines to excite and propagate the MSSW at 1.9 GHz. The MSSW threshold power and saturation response time was found to be related to the $\Delta$H.

Resistivity Variation of Nickel Oxide by Substrate Heating in RF Sputter for Microbolometer

  • Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.348-352
    • /
    • 2015
  • Thin nickel oxide films formed on uncooled and cooled $SiO_2/Si$ substrates using a radio frequency (RF) magnetron sputter powered by 200 W in a mixed atmosphere of argon and oxygen. Grazing-incidence X-ray diffraction and field emission scanning electron microscopy are used for the structural analysis of nickel oxide films. The electrical conductivity required for better bolometric performance is estimated by means of a four-point probe system. Columnar and (200) preferred orientations are discovered in both films regardless of substrate cooling. Electric resistivity, however, is greatly influenced by the substrate cooling. Oxygen partial pressure increase during the nickel oxide deposition leads to a rapid decrease in resistivity, and the resistivity is higher in the cooled nickel oxide samples. Even when small microstructure variations are applied, lower resistivity in favor of low noise performance is acquired in the uncooled samples.

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Effect of Organic Acids on Growth and Heat Resistance of Listeria monocytogenes Scott A (Listeria monocytogenes Scott A 의 성장과 열저항성에 미치는 유기산의 영향)

  • 이신호;조현순;김순희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.293-297
    • /
    • 1994
  • The effect of organic acids on growth and heat resistance of Listeria monocytogenes Scott A were investigated. The growth of L. monocytogenes was inhibited in Tryptic Soy Broth(TSB) with 0.1 or 0.2% of acetic , tartic , propionic , citric and lactic acid at 35$^{\circ}C$, respectively. The growth of l. Monocytogenes did not occur in TSB with 0.2% of acetic acid or propionic acid during 48h of incubation. The heat resistance of L.monocytogenes was affected by kind of organic acid, ph and heating substrate. L.monocytogenes showed more heat resistant in TSB with various organic acids than in 0.1M sodium phosphate with the same organic acids. Heat resistance decreased as pH of heating substrate decreased . Surface-adherent microcolony was more heat resistant than planktonic cell of L. monocytogenes. Propionic and lactic acids more affected on heat resistance of L.monocytogenes than acetic , tartaric and citric acids.

  • PDF

Statistical Modeling of the Pretilt Angle Control in Nematic Liquid Crystal using In-situ Photoalignment Method on Plastic Substrate

  • Kang, Hee-Jin;Lee, Jung-Hwan;Yun, Il-Gu;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2006
  • In this study, the response surface modeling of the pretilt angle control using in-situ photoalignment method with oblique UV exposure .on plastic substrate is investigated. The pretilt angle is the main factor to determine the alignment of the liquid crystal display. The response surface model is used to analyze the variation of the pretilt angle on the various process conditions. Heating temperature and UV exposure time are considered as input factors. The liquid crystal (LC) pretilt angle increased with increasing heating temperature and UV exposure time. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

Effect of Substrate Pre-heating on Microstructure and Magnetic Properties of Nd-Fe-B Permanent Magnet Manufactured by L-PBF (L-PBF 공정으로 제조된 Nd-Fe-B계 영구자석의 기판 가열에 따른 미세조직과 자기적 특성 변화)

  • Yeon Woo Kim;Haeum Park;Tae-Hoon Kim;Kyung Tae Kim;Ji-Hun Yu;Yoon Suk Choi;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.116-122
    • /
    • 2023
  • Because magnets fabricated using Nd-Fe-B exhibit excellent magnetic properties, this novel material is used in various high-tech industries. However, because of the brittleness and low formability of Nd-Fe-B magnets, the design freedom of shapes for improving the performance is limited based on conventional tooling and postprocessing. Laser-powder bed fusion (L-PBF), the most famous additive manufacturing (AM) technique, has recently emerged as a novel process for producing geometrically complex shapes of Nd-Fe-B parts owing to its high precision and good spatial resolution. However, because of the repeated thermal shock applied to the materials during L-PBF, it is difficult to fabricate a dense Nd-Fe-B magnet. In this study, a high-density (>96%) Nd-Fe-B magnet is successfully fabricated by minimizing the thermal residual stress caused by substrate heating during L-PBF.