• Title/Summary/Keyword: Substrate glass

Search Result 1,660, Processing Time 0.025 seconds

The durability of LCD glass substrate in dry etching

  • Yanase, Tomoki;Miwa, Shinkichi;Yamazaki, Hiroki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.857-859
    • /
    • 2007
  • Durability of LCD glass, OA-10 and OA-21, to $SiCl_4$ and $SF_6$ gases was investigated. Reaction products are generated on the glass surface. The reaction products are reduced by changing the etching conditions. the durability of OA-10 and OA-21 to the dry etching gases is comparable.

  • PDF

Active-matrix Flexible Display on Plastic Substrate Fabricated by Glass Line

  • Lee, Cheng-Chung;Yeh, Yung-Hui;Lee, Tzong-Ming
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.348-351
    • /
    • 2007
  • A pure polyimide substrate and polyimide substrate with nano-silica additive have been formed on glass by coating. The a-Si:H TFT arrays have been formed on such polyimide substrate for driving TNLCD.

  • PDF

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

The Structural and Electrical Properties of CdSe Films Deposited at Low Temperature (저온에서 증착한 CdSe막의 구조적 및 전기적 특성)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.776-781
    • /
    • 2010
  • CdSe films were deposited on glass substrates (CdSe/glass) by thermal evaporation. Substrate temperature was lowered by cooling substrate holder with liquid nitrogen. Substrate temperatures were $200^{\circ}C$, $0^{\circ}C$ and $-40^{\circ}C$. The crystallographic properties and surface morphologies of the CdSe/glass films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical and electrical properties of the films were investigated by dependence of energy gap, photosensitivity and resistivity on the substrate temperature. CdSe/glass showed energy gap of ~1.72 eV regardless of substrate temperature. The resistivity of the films decreased to $0.5{\Omega}cm$ by lowering the substrate temperature to $-40^{\circ}C$. The CdSe/glass films prepared at $0^{\circ}C$ showed the highest photosensitivity among the films in this study.

Enhancement of the nucleation density for diamond film on the pretreated glass substrate by the application of cyclic modulation of the source-gas flow rate

  • Kim, T.-G.;Kim, S.-H.;Kim, Y.-H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 2000
  • For the enhancement of the nucleation density of the diamond film, we introduced the cyclic process. The cyclic process was carried out by the on/off control of CH$_4$ flow rate for a relatively short time (10 min), compared with the total reaction time (6 h). Prior to depositing the diamond film, we made the pretreated glass substrate via the unidirectional scratch using ∼l $\mu\textrm{m}$ size diamond powders. Diamond films were deposited on the pretreated glass substrate in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. We observed the enhancement of the nucleation density of the diamond films caused by the cyclic process. Detailed surface morphologies of the substrate were investigated after the cyclic process. Based on these results, we discussed the cause for the enhancement of the nucleation density on the pretreated glass substrate by the cyclic process.

  • PDF

A Study on the Sintering and Mechanism of Crystallization Prevention of Alumina Filled Borosilicate Glass (알루미나를 충전재로 첨가한 붕규산염 유리의 소결 및 결정화 방지기구에 대한 연구)

  • 박정현;이상진;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.956-962
    • /
    • 1992
  • The predominant sintering mechanisms of low firing temperature ceramic substrate which consists of borosilicate glass containing alumina as a filler are the rearrangement of alumina particles and the viscous flow of glass powders. In this system, sintering condition depends on the volume ratio of alumina to glass and on the particle size. When the substrate contains about 35 vol% alumina filler and the average alumina particle size is 4 $\mu\textrm{m}$, the best firing condition is obtained at the temperature range of 900∼1000$^{\circ}C$. The extensive rearrangement behavior occurs at these conditions, and the optimum sintering condition is attained by smaller size of glass particles, too. The formation of cristobalite during sintering causes the difference of thermal expansion coefficient between the substrate and Si chip. This phenomenon degradates the capacity of Si chip. Therefore, the crystallization should be prevented. In the alumina filled borosilicate glass system, the crystallization does not occur. This effect may have some relation with aluminum ions in alumina. For aluminum ions diffuse into glass matrix during sintering, functiong as network former.

  • PDF

Adsorption Property of Silicone Rubber Sticking Chuck for OLED Glass Substrate

  • Kim, Jin-Hee;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Manufacturing process of OLED contains adsorption-desorption process of glass substrate. There are several adsorption methods of glass substrate such as atmospheric pressure, vacuum and electrostatic adsorption. However, these methods are very complex to connect system. Therefore, the adsorption method using silicone rubber based sticking chuck was proposed in this study. Three types of silicone rubbers having 0, 19.3 and 32.2 wt% of fluorine were used and their mechanical properties, surface energies and adsorption properties were examined. According to the results ${\sigma}_{300}$ and hardness increased with increasing fluorine contents, but elongation was decreased. Also, fluorosilicone rubber containing 32.2 wt% of fluorine showed the lowest surface tension, among three types of rubber and resulted in the highest initial tack with glass substrate. After the adsorption-desorption test of 300,000 cycles was performed, the adsorption force of S-1 (silicone rubber) decreased largely from 2.34 to 0.73 MPa. However, the S-3 (fluorosilicone rubber having 32.2 wt%. of fluorine) decreased only from 3.15 to 2.24 MPa. From this study, we obtained the valuable equations related to long term durability of silicone based sticking chuck. Finally the transfer of silicone rubber to glass substrate with the adsorption-desorption process was not occurred and this phenomenon was examined by UV-Visible spectroscopy.

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Structure and Photo-catalytic Activity of TiO2 Films Deposited by Reactive RF Magnetron Sputtering (반응성 RF 마그네트론 스퍼터링법을 이용하여 MgO 기판위에 증착한 TiO2 박막의 구조와 광촉매 특성)

  • Lee, Jung-Chul;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.113-116
    • /
    • 2007
  • Titanium dioxide ($TiO_2$) films were deposited by RF reactive magnetron sputtering on non-alkali glass and single crystal MgO (100) substrate at substrate temperature of $400^{\circ}C$. Micro structures of $TiO_2$ films were investigated by XRD, FE-SEM, and Pole figure measurements. $TiO_2$ films deposited on glass substrate showed preferred orientation of anatase (101), whereas $TiO_2$ films deposited on the MgO single crystal substrate showed hetero-epitaxial anatase (100). $TiO_2$ film grown on MgO substrate showed higher photoctalytic activity than that of glass substrate.

Double Texturing of Glass Substrate and ZnO : Al Transparent Electrode Surfaces for High Performance Thin Film Solar Cells (고성능 박막태양전지를 위한 유리 기판 및 산화 아연 투명 전극의 2중 구조 표면 조직화 공정 연구)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1230-1235
    • /
    • 2017
  • We studied surface texture-etching of glass substrate by using reactive ion etching process with various working pressure (0.7~9.0 mT). With the increase in the pressure, a haze parameter, which means diffusive transmittance/total transmittance, was increased in overall wavelength regions, as measured by spectrophotometer. Also, atomic force microscopy (AFM) study also showed that the surface topography transformed from V-shaped, keen surface to U-shaped, flattened surface, which is beneficial for nanocrystalline silicon semiconductor growth with suppressing defective crack formation. The texture-etched ZnO:Al combined with textured glass exhibited pronounced haze properties that showed 60~90 % in overall spectral wavelength regions. This promising optical properties of double textured, transparent conducting substrate can be widely applied in silicon thin film photovoltaics and other optoelectronic devices.