• 제목/요약/키워드: Substrate film

검색결과 4,453건 처리시간 0.038초

SINTERED $Al_{2}O_{3}$-TiC SUBSTRATE FOR THIN FILM MAGNETIC HEAD

  • Nakano, Osamu;Hirayama, Takasi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1998년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1998
  • In 1957, the first magnetic disk drive compatible with a movable head was introduced as an external file memory device for computer system. Since then, magnetic disks have been improved by increasing the recording density, which has brought about the development of a high performance thin film magnetic head. The thin film magnetic head has a magnetic circuit on a ceramic substrate using IC technology. The physical property of the substrate material is very important because it influences the tribology of head/disk interface and also manufacturing process of the head. $Al_{2}O_{3}$-TiC ceramics, so called ALTIC, is known to be one of the best substrate materials which satisfies this property requirement. Even though the head is not in direct contact with the disk, frequent instantaneous contacts are unavoidable due to its high rotating speed and the close gap between them. This may cause damage in the magnetic recording media and, thus, it is very important that the magnetic head has a good wear resistance. $Al_{2}O_{3}$-TiC ceramics has an excellent tribological property in head/disk interface. Manufacturing process of thin film head is similar to that of IC, which requires extremely smooth and flat surface of the substrate. The substrate must be readily sliced into the heads without chipping. $Al_{2}O_{3}$-TiC ceramics has excellent machineability and mechanical properties. $Al_{2}O_{3}$-TiC ceramics was first developed at Nippon Tungsten Co. as cutting tool materials in 1968, which was further developed to be used as the substrate materials for thin film head in collaboration with Sumitomo Special Metals Co., Ltd. in 1981. Today, we supply more than 60% of the substrates for thin film head market in the world. In this paper, we would like to present the sintering process of $Al_{2}O_{3}$-TiC ceramics and its property in detail.

  • PDF

PET 기판 위에 증착된 ZnO:Al 투명 전도막의 전기적 특성에 미치는 바이어스전압의 효과 (Effective of bias voltage as electrical property of ZnO:Al transparent conducting films on polyethylen terephthalate substrate)

  • 박병욱;;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1260-1261
    • /
    • 2008
  • Aluminium doped zinc oxide (ZnO:Al) thin film has emerged as one of the most promising transparent conducting electrode in flat panel displays(FPD) and in photovoltaic devices since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r.f. magnetron sputtering method. Wide ranges of bias voltage, -30V${\sim}$45V, was applied to the growing films as an additional energy instead of substrate heating, and the effect of positive and negative bias on the film structure and electrical properties of ZnO:Al films was studied and discussed. The results showed that a bias applied to the substrate during sputtering contributed to the improvement of electrical properties of the film by attracting ions and electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO film on the substrate, resulting in significant variations in film structure and electrical properties. The film deposited on the PET substrate at r. f. discharge power of 200 W showed the minimum resistivity of about $2.4{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 87%.

  • PDF

Properties of ZnO:Al thin film on variation of substrate temperature for display application

  • Keum, M.J.;Kim, H.W.;Cho, B.J.;Son, I.H.;Choi, M.G.;Lee, W.J.;Jang, K.W.;Kim, K.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1474-1476
    • /
    • 2005
  • ZnO:Al(AZO) has been investigated for the photovoltaic cell or TCO(Transparent Conductive Oxide) of the display, because it has good electrical and optical properties. In this study, the ZnO:Al(AZO) thin film prepared on variation of substrate temperature by FTS(Facing Targets Sputtering) system. In case of TCO, because resistivity and roughness values affect the lighting of the OLED, their factors are very important. Therefore, in this paper, the electrical and optical properties of the AZO thin film were investigated with the deposition conditions and its roughness was investigated on variation of the substrate temperature. In results, AZO thin film deposited with the transmittance over 80% and the resistivity was reduced from $1.36{\times}10^{-3}$ [O-cm] to $4{\times}10^{-4}$ [O-cm] with increasing the substrate temperature from R.T to $200[^{\circ}C]$. Especially, we could obtain the resistivity $4{\times}10^{-4}$ [O-cm] of AZO thin film prepared at working pressure 1[mTorr], input current 0.4[A] and substrate temperature $200[^{\circ}C]$.

  • PDF

The Study of a-Si Film Crystallization using an XeCl Laser Annealing on the Plastic Substrate

  • Kim, Do-Young;Suh, Chang-Ki;Shim, Myung-Suk;Kim, Chi-Hyung;Yi, Jun-Sin;Lee, Min-Chul;Han, Min-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.634-638
    • /
    • 2003
  • We reported the a-Si crystallization using a XeCl excimer laser annealing on the plastic substrate. The poly-Si film is able to grow in the low temperature and light substrate like a plastic. For the preparation of sample, substrate is cleaned by organic liquids. The film of $CeO_{2}$ layer as the buffer layer was grown by sputtering methods. After a-Si film deposition using ICPCVD, the film was crystallized by XeCl excimer laser. In this paper, we present the crystallization properties of a-Si on the plastic substrate

  • PDF

HCD 이온 플레이팅법에 의해 증착된 MgO박막의 특성에 관한 연구 (A Study on the Characteristics of the MgO Thin Film Deposited by the Hollow Cathode Discharge Ion Plating Method)

  • 정우준;정희섭;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.200-202
    • /
    • 1996
  • MgO film was deposited on the glass substrate by the hollow cathode discharge ion plating method and the characteristics of the MgO thin film such as deposition rate, crystalline orientation, surface morphology and secondary electron coefficient were investigated. The deposition rate of MgO thin films were $430^{\sim}1270{\AA}$/min at various temperatures and biases. The crystalline orientation of the MgO thin film changed from (200) to (220) upon increasing the HCD current from 100A to 200A. These results indicated that the crystallin orientation of the MgO thin film was determined by the super-saturation ratio. The (200) peak decreased and the (220) peak increased as the substrate bias increased, while both peaks increased as the substrate temperature increased. The grain size increased as the substrate bias increased and the secondary electron emission coefficient increased as the substrate bias increased.

  • PDF

엘라스토머 기판 상에 제작한 유기 강유전체 메모리 소자의 전기적 특성 (Electrical Characteristics of Organic Ferroelectric Memory Devices Fabricated on Elastomeric Substrate)

  • 정순원;류봉조;구경완
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.799-803
    • /
    • 2018
  • We demonstrated memory thin-film transistors (MTFTs) with organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) and an amorphous oxide semiconducting indium gallium zinc oxide channel on the elastomeric substrate. The dielectric constant for the P(VDF-TrFE) thin film prepared on the elastomeric substrate was calculated to be 10 at a high frequency of 1 MHz. The voltage-dependent capacitance variations showed typical butterfly-shaped hysteresis behaviors owing to the polarization reversal in the film. The carrier mobility and memory on/off ratio of the MTFTs showed $15cm^2V^{-1}s^{-1}$ and $10^6$, respectively. This result indicates that the P(VDF-TrFE) film prepared on the elastomeric substrate exhibits ferroelectric natures. The fabricated MTFTs exhibited sufficiently encouraging device characteristics even on the elastomeric substrate to realize mechanically stretchable nonvolatile memory devices.

반사 타원법과 투과율 분석법을 사용한 반투명 기층 위 매우 약한 광흡수 박막의 두께와 복소굴절률 정밀 결정 (Precise Determination of the Complex Refractive Index and Thickness of a Very Weakly Absorbing Thin Film on a Semi-transparent Substrate Using Reflection Ellipsometry and Transmittance Analysis)

  • 김상열
    • 한국광학회지
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2024
  • 유리기층에 코팅되어 있는 박막의 광학상수를 정확하게 분석하기 위해, 반투명 기층 위에 다층박막이 코팅되어 있는 시료의 유사 투과타원 상수 표현과 투과율 표현을 구체적으로 제시하였다. 두꺼운 기층에서 일어나는 다중반사로 인한 빛의 세기를 결맞지 않도록 중첩하는 동시에, 반투명 기층의 광흡수 영역에서 기층의 흡수를 정확하게 반영함으로써 다층박막이 코팅된 반투명 기층 시료의 정확한 모델링 분석이 가능하게 하였다. 흡광도가 매우 낮은 파장대역에서 투과율 측정에 기반한 분석과 타원법에 기반한 모델링 분석 방법이 가지는 박막의 소광계수의 차이를 투과율의 민감도와 타원상수의 민감도 분석을 통하여 비교 분석하였다. 투과율 분석법과 반사 타원법을 SiN 박막이 코팅된 유리기층 시료에 적용함으로써 소광계수가 매우 작을 때에도 SiN 박막의 복소굴절률과 두께를 정확하게 결정할 수 있음을 보였다.

기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 유연 ITO 투명 전극의 특성에 미치는 효과 연구 (Effect of Substrate Preheating on the Characteristics of Flexible and Transparent ITO Electrodes Grown by Roll-to-Roll Sputtering for Touch Panel Applications)

  • 김동주;이원영;김봉석;김한기
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2010
  • We report on the effect of PET substrate preheating on the characteristics of the flexible and transparent indium tin oxide (ITO) electrode grown by a specially designed roll-to-roll sputtering system for touch panel applications. It was found that electrical and optical properties of the roll-to-roll sputter grown ITO film were critically dependent on the preheating of the PET substrate. In addition, the roll-to-roll sputter-grown ITO film after post annealing test at $140^{\circ}C$ for 90 min showed stable electrical and optical properties. The low sheet resistance and high optical transmittance of the ITO film grown on the preheated PET substrate demonstrate that the preheating process before ITO sputtering is one of the effective way to improve the characteristics of ITO/PET film. Furthermore, the superior flexibility of the ITO electrode grown on the preheated PET substrate indicates that the preheating treatment is a promising technique to obtain robust ITO/PET sample for touch panel applications.

탄소 기판을 이용한 박막 실리콘 태양전지의 배리어 층 효과 (The Effect of Barrier Layer on Thin-film Silicon Solar Cell Using Graphite Substrates)

  • 조영준;이동원;조준식;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.505-509
    • /
    • 2016
  • We have investigated the characteristics of amorphous silicon (a-Si) thin-film solar cell by inserting barrier layer. The conversion efficiency of a-Si thin-film solar cells on graphite substrate shows nearly zero because of the surface roughness of the graphite substrate. To enhance the performance of solar cells, the surface morphology of the back side were modified by changing the barrier layer on graphite. The surface roughness of graphite substrate with the barrier layer grown by plasma enhanced chemical vapor deposition (PECVD) reduced from ~2 um to ~75 nm. In this study, the combination of the barrier layer on graphite substrate is important to increase solar cell efficiency. We achieved ~ 7.8% cell efficiency for an a-Si thin-film solar cell on graphite substrate with SiNx/SiOx stack barrier layer.

Flexible Display i Low Temperature Processes for Plastic LCDs

  • Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권2호
    • /
    • pp.10-14
    • /
    • 2003
  • Flexible displays such as plastic-based liquid crystal displays (LCDs) and organic light-emitting diode displays (OLEDDs) have been researched and developed at KETI since 1997. The plastic film substrate is very weak to heat and pressure compared to glass substrate, that its fabrication process is limited to 110$^{\circ}C$ and low pressure. The ITO films were deposited on the bare plastic film substrate by rf-magnetron sputtering. Moreover, in order to maintain uniform cell gap and pressure on the plastic film substrate, we utilized newly-invented jig and fabrication process. Electro-optical characteristics were better than or equivalent to those of typical glass LCDs though it is thinner, lighter-weight, and more robust than glass LCDs.