• Title/Summary/Keyword: Substituent Effect

Search Result 272, Processing Time 0.021 seconds

Synthesis of Bis(dithiobenzil) Metal Complex and Its Photostability (Bis(dithiobenzil) 금속 화합물의 합성 및 광안정성)

  • Lee, Gun-Dae;Park, Na Yi;Jeon, Seung Yup;Heo, Jin;Son, Dae Hee;Hwang, Tae Kyung;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.433-437
    • /
    • 2007
  • Bis(dithiobenzil) metal complex, used as functional NIR absorbing dye and photostabilizer, was synthesized using bezoin and anisoin as intermediate compounds. And squarylium, a charge generation material, was synthesized to find its photostability effect. The structure of the product was determined by $^1H-NMR$ and FT-IR and the thermal property was analyzed by DSC and TGA. Optical property and photostability were determined by UV-Vis-NIR spectroscopy. High absorbance was obtained in the NIR range and maximum absorbing wavelength was shifted depending on the nature and position of substituent in the bis(dithiobenzil) metal complex. The photofading effect of squarylium decreased by the addition of bis(dithiobenzil) metal complex.

Kinetics and Mechanism of Nucleophilic Addition of Sodium Thiophenoxide to $\alpha$-(n-Butyl)-N-Phenylnitrone Derivatives ($\alpha$-(n-Butyl)-N-Phenylnitrone 유도체에 대한 Sodium Thiophenoxide의 친핵성 첨가반응 메카니즘과 그의 반응 속도론적 연구)

  • Lee, Gwang Il;Lee, Seok U;Gwak, Cheon Geun;Kim, Yeong Ju;No, Seung Il;Lee, Gi Chang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.442-448
    • /
    • 1994
  • The rate constants of the nucleophilic reaction of ${\alpha}$-(n-butyl)-N-phenylnitrone and its derivatives have been determined by ultraviolet spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. Final product of the addition reaction was $\alpha$-phenylthiobutylidene-aniline. Base on the rate equation, genernal base effect, substituent effect and final product, plausible mechanism of addition reaction have been proposed. Below pH 3.0 the reaction was inititated by the addition of thiophenol, and in the range of pH 3.0∼10.0, proceeded by the competitive addition of thiophenol and thiophenoxide anion. Above the pH 10.0, the reaction proceeded through the addition of a thiophenoxide anion.

  • PDF

Aminolyses of Y-substituted Phenyl 2-Furoates and Cinnamates: Effect of Nonleaving Group Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan;Akhtar, Kalsoom;Park, Youn-Min;Khan, Sher Bahadar
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1353-1357
    • /
    • 2007
  • Second-order rate constants (kN) have been determined spectrophotometrically for reactions of Y-substituted phenyl 2-furoates (1a-h) with piperidine and morpholine in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 oC. The Brønsted-type plot exhibits a downward curvature for the reactions with strongly basic piperidine but is linear for the reactions with weakly basic morpholine. The slope of the curved Brønsted-type plot changes from -1.25 to ?0.28 as the pKa of the conjugate acid of the leaving aryloxides decreases. The pKa at the center of the Brønsted curvature, defined as pKa°, was determined to be 6.4. The aminolysis of 1a-h has been concluded to proceed through a stepwise mechanism on the basis of the curved Brønsted-type plot. The reactions of Ysubstituted phenyl cinnamates (2a-g) with piperidine resulted in a curved Brønsted-type plot with a pKa° values of 6.4. However, the curved Brønsted-type plot has been suggested to be not due to a change in the RDS but due to a normal Hammond effect of a concerted mechanism, since the Brønsted-type plot for the corresponding reactions with morpholine results in also a curved Brønsted-type plot with a pKa° values of 6.1. The furoates with a basic leaving group (i.e., 1b-g) are less reactive than the corresponding cinnamates (i.e., 2b-g). The k2/ k-1 ratios for the reactions of 1b-h are much smaller than unity, which has been suggested to be responsible for their low reactivity.

Hydrolysis Mechanism of Phenyl-N-benzoylchlorothioformimidate Derivatives (Phenyl-N-benzoylchlorothioformimidate 誘導體의 加水分解 反應메카니즘)

  • Ki-Sung Kwon;Chon-Suk Kim;Yong-Gu Lee;Nack-Do Sung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.589-597
    • /
    • 1992
  • The rate constants of hydrolysis of phenyl-N-benzoylchlorothioformimidates were determined by UV spectrophotometry in 30% (v/v) aqueous dioxane at $25^{\circ}C$. On the basis of rate equation, general base catalysis, solvent effect, substituent effect, thermodynamic parameters, frontier orbital interaction and hydrolysis product analysis, it may be concluded that the hydrolysis of phenyl-N-benzoylchlorothioformimidates proceeds through $S_N1$ mechanism via azocarbocation intermidiate below pH 10.0, while above pH 10.00 the hydrolysis proceeds through nucleophilic addition-elimination ($Ad_{N-E}$) mechanism. In the range of pH from 10.0 to 11.0 these two reaction occur competitively.

  • PDF

Effect of the Aryl Substituent on Antitumor Activity of 2-Substituted-1,4-dihydroxy-9,10-anthraquinones and 2-Substituted-anthracene-1,4,9,10-tetraones

  • Nam, Nguyen-Hai;Jin, Guang-Zhu;Tam, Mai-Ngoc;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.592-607
    • /
    • 1999
  • 2-(1-Aryl-1-hydroxymethyl)-and 2-aroyl-DHAQ derivatives (DHAQ, 1,4-dihydroxy-,10-anthraquinone), and 2-(1-aryl-1-hydroxymethyl)-ATO derivatives (ATO, anthraceneactivity (T/C 125~128%), though their cytotoxicity was not further improved compared to that of 2-(1-aryl-1-dydroxymethyl)-1,4-dihydroxy-9,10-anthraquinones. They manifested no correlation between the cytotoxicity and the antitumor activity. In case of 2-[1-hydroxy-1-(4-propylphenyl)-methyl]-ATO, the most bioactive one in viv-1,4,9,10-tetraone) were synthesized and their antitumor activities were determined. 2-(1-Aryl-1-hydroxymethyl)-DHAQ derivatives showed a stronger cytotoxicity compared to the series of 2-(1-hydroxyalkyl)-1,4-dihydroxy-9,10-anthraquinone derivatives. It was suggested that the presence of aryl group at the side chain accelerated the bioreductive activation leading to cell death. 2-Aroyl-DHAQ derivatives, despite their higher electrophilicity, revealed smaller cytotoxicity and antitumor activity (expressed by T/C value) than 2-(1-aryl-1-hydroxymethyl)-DHAQ derivatives. Thus, no consistent relationship between the electronic effect on aromatic side chain and the cytotoxicity was observed. ATO series exhibited a higher antitumor o among the same series, it showed an $ED_{50}$ value of 10.2 mg/mL and a T/C value of 218%. It is assumed that the anthrancene1,4,9,10-tetraones after uptake into cellular tissues might be transformed to a cytotoxic metabolite(s).

  • PDF

Synthesis and Hydrolysis of Furfurylidene acetophenone Derivatives (Furfurylidene acetophenone유도체의 합성과 가수분해 반응)

  • Lee, Ki-Chang;Lee, Kwang-Il;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.99-105
    • /
    • 1996
  • Furfurylidene acetophenone derivatives were synthesis, it was measured that hydrolysis made use of UV at a wide pH $1.0{\sim}13.0$ range in 30% $dioxane-H_2O$ solution, $25{\pm}1^{\circ}C$. On the basis of general base catalysis, substitutent effect, confirmation of hydrolysis products, it was measured the reaction rate of furfurylidene acetophenone derivatives for the pH change. It maybe concluded that a part was unrelated to pH and another part was in proportion to concentration of hydroxide ion : Above pH 10.0, It was in proportion to concentration of hydroxide ion, a part having no concern with pH was added to the neutral $H_2O$ molecule. From the result of measurement the reaction rate, hydrolysis of furfurylidene acetophenone derivatives confirmed to the irreversible first order. Through measurement the substituent effect, It found that reaction rate was accelerated by electron attracting group. Also, From the result of final product, There were furfural and acetophenone. On the basis of these findings, Hydrolysis for the furfurylidene acetophenone derivative was proposed a fitting mechanisms.

Effect of Substituent of Chain Transfer agent in the Free Radical Polymerization (자유 라디칼 중합반응에서 사슬이동제의 치환기 효과)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Carbon tetrachloride is very reactive chain transfer agent due to the resonance stability of the trichlorocarbon radicals after breaking of C-Cl bond. Effect of benzylic radical comparing to trichlorocarbon radicals in the chain tranrfer reactions was investigated. From the structural point of view, cumyl chloride is a good candidate because it has the C-Cl bond with benzylic radicals after displacement of C-Ci bond. The reactivity of free radical polymerization of styrene in the presence of cumyl chloride was compared with that of carbon tetrachloride by calculating chain transfer constants. Results show that the cumyl chloride acts as a stronger chain transfer agent than carbon tetrachloride. The calculated chain transfer constant of cumyl chloride shows higher value (0.0463) than that of carbon tetrachloride (0.0011) in the styrene polymerization. High reactivity of cumyl chloride comparing to that of carbon tetrachloride is probably due to the higher resonance stability or benzylic radical than that or trichlorocarbon radicals after breaking of C-Cl bond. Monte Carlo simulation method is applied for characterizing the validity of kinetic constants according to the ratio of chain transfer agent to monomer.

Mechanism of the Hydrolysis of Phenyl N-(p-chlorobenzoyl)Chloroformimidate Derivatives in Acid Media (산성용액 중에서 Phenyl N-(p-chlorobenzoyl)chloroformimidate 유도체의 가수분해 반응 메카니즘)

  • Nack-Do Sung;Young-Gu Cheun;Ki-Sung Kwon;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.352-358
    • /
    • 1987
  • Rate constants for the hydrolysis of para-substituted phenyl N-(p-chlorobenzoyl)chloroformimidate (I) derivatives in 1 : 4 dioxane-water at $25^{\circ}C$ have been determined. Rate data, substituent effect $(\rho\>{\rho}^+)$, product analysis and MO calculation indicate that the uncatalyzed reaction proceeds through an $S_N1$ mechanism involving the formation of azocarbonium ion (II) below pH 3.0, and the base-catalyzed reaction proceeds through an $S_N2$ mechanism via transition state (III) above pH 4.0. The relative stability of four peri planar conformational isomers were (E-ap) > (Z-ap) > (E-sp) > (Z-ap), respectively, and the most stable stereo structures shows that the Y-substituted phenyl group $(C_6H_4-Y)$ occupy vertical $(90^{\circ})$ position on the plane of the benzimidochloroformyl group in (E-ap) conformer. The nucleophilic substitution of water molecule occurs by sigma attack to the activatived azomethine carbon atom of (I) derivatives.

  • PDF

Ab Initio Studies on Proton Affinities of Substituted Oxazoles (치환 옥사졸의 양성자 친화도에 대한 ab initio 연구)

  • Lee, Hyun-Mee;Lee, Song-Eun;Chang, Mahn-Sik;Park, Byung-Kak;Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.493-500
    • /
    • 1995
  • The geometry optimization of oxazole, relevant to the binding of lexitropsin that contains this ring to the base pair (G-C sequence) of minor groove of DNA, is performed with the aid of MM+ and ab initio (Hartree-Fock) calculations. The proton affinity and electronic structure are calculated at the 6-31G and $6-31G^{\ast}$ level for the optimized geometry. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate the substituent effect on the proton affinities of oxazoles. It is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted oxazoles.

  • PDF

Kinetic Studies on the Mechanism of Hydrolysis of 2-Phenyl-4H,5H-3-methyl-3-thiazolinium Perchlorate Derivatives (2-Phenyl-4H,5H-3-methyl-3-thiazolinium Perchlorate 유도체의 가수분해 반응 메카니즘에 관한 반응속도론적 연구)

  • Kim, Tae-Rin;Lee, So-Young;Han, Man-So;Pyun, Sang-Yong;Lee, Seok-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.120-126
    • /
    • 2000
  • The rate constants for the hydrolysis of 2-phenyl-4H,5H-3-methyl-3-thiazolinium perchlorate(PTP) derivatives were detemined by the use of ultraviolet visible spectrophotometer in water. The rate equations which could be applied over a wide pH ranges were obtained. On the basis of rate equation, hydrolysis product analysis, general base catalysis, and substituent effect, a plausible mechanism of the hydrolysis is proposed: Below pH 4.0, the reaction is initiated by addition of water, while above pH 9.0, Michael type nucleophilic addition takes place. In the pH range of $4.5{\sim}8.0$, these two reactions appear to occur competitively.

  • PDF