• Title/Summary/Keyword: Subspace angles

Search Result 10, Processing Time 0.023 seconds

On Estimating Incident Angles of wide-Gand Signals in Multipath Environments (다경로인 경우 광대역 신호의 입사각 추정)

  • 조정권;조병모;차일환;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 1989
  • The MUSIC(MUltiple SIgnal Characterization)algorithm has been extenced to the UCERSS(Unit Circle Eigendecomposition Rational Signal Subspace) by taking eigendecimposition on the unit circle in order to estimate incident angles of multiple wide band signals. The purpose of this paper is to presetn SSB-UCERSS(Signal Subspace Based UCERSS) and SS-UCERSS(Spatially Smoothed UCERSS) estimating the incident angles of multiple side band signals in multipath(coherent signals) environments. Computer simulation results indicate that SSB-UCERSS yields the best result, while the SS-UCERSS performs better than the UCERTSS in a multipath environment.

  • PDF

Subspace-Based Adaptive Beamforming with Off-Diagonal Elements (비 대각요소를 이용한 부공간에서의 적응 빔 형성 기법)

  • Choi Yang-Ho;Eom Jae-Hyuck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.84-92
    • /
    • 2004
  • Eigenstructure-based adaptive beamfoming has advantages of fast convergence and the insentivity to errors in the arrival angle of the desired signal. Eigen-decomposing the sample matrix to extract a basis for the Sl (signal plus interference) subspace, however, is very computationally expensive. In this paper, we present a simple subspace based beamforming which utilizes off-diagonal elements of the sample matrix to estimate the Sl subspace. The outputs of overlapped subarrays are combined to produce the final adaptive output, which improves SINR (signal-to-interference-plus-noise ratio) comapred to exploiting a single subarray. The proposed adaptive beamformer, which employs an efficient angle estimation is very roubust to errors in both the arrival angles and the number of the incident signals, while the eigenstructure-based beamforer suffers from severe performance degradation.

A Study on an Improved MVE for Estimating the Direction of Arrival of Multiple Sources (다중 신호원의 도래방향 추정을 위한 개선된 MVE에 관한 연구)

  • 정용민;신준호;김용득
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.687-690
    • /
    • 1999
  • Many high-resolution algorithms based on the eigen-decomposition analysis of observed covariance matrix, such as MVE, MUSIC, and EVM, have been proposed. However, the resolution of spectral estimates for these algorithms is severely degraded when Signal-to-Noise Ratio (SNR) is low and arrival angles of signal are close to each other. And EVM and MUSIC is powerful for the characteristic of SNR. But have the limitation that the number of signals presented is known. While MVE is bad the characteristic of SNR. In this study, we propose a modified MVE to enhance the resolution for Direction-Of-Arrival (DOA) estimation of underwater acoustic signal. This is to remove the limitation that existing algorithms should know the information for the number of signals. Because the algorithms founded on the eigen value estimate DOA with only the noise subspace, they have the high-resolution characteristic. And then, with the method reducing the effect of the signal subspace, we are to reduce the degradation because of complementary relationship between the signal subspace and the noise subspace. This paper, with using the simulation data, we have estimated the proposed algorithms, compared it with other high-resolution algorithms. The simulation results show that the modified MVE proposed is accurate and has a better resolution even though SNR is low, under the same condition.

  • PDF

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

On Estimating the Incident Angles of Wide Band Signals in Low SNR Environment (신호 대 잡음비가 낮은 경우 광대역 신호의 입사각 추정)

  • Jo, Jeong-Gwon;Hwang, Yeong-Su;Cha, Il-Hwan;Yun, Dae-Hui
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.44-52
    • /
    • 1989
  • The UCERSS (Unit Circle Eigendecomposition Rational Signal Subspace) algorithm has extended MUSIC (MUltiple Signal Classification ) by using eigendecomposition on the unit circle in order to estimate incident angles of multiple wide band signals. The purpose of this thesis is to further extend the UCERSS to be able to estimate the direction of arrivals of multiple wide band signals in very low SNR . The wide band ESPRIT (Estimation of Signal Parameter via Rotational Invariance Technique) uses covariance difference matrices to reduce noise components. In this paper the wide band ESPRIT which combines the ideas of UCERSS and ESPRIT Is proposed. Computer simulation results Indicate that the performances of the proposed approaches are superior to those of the UCERSS in very low SNR.

  • PDF

Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적으로 방위각 이노베이션을 구하는 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo;Lee, Jang-Sik;Lee, Kyun-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, Ryu et al. proposed a multiple target angle tracking algorithm using the angular innovation extracted from the estimated signal subspace. This algorithm obtains the angles of targets and associates data simultaneously. Therefore, it has a simple structure without data association problem. However it requires the calculation of the inverse of a real matrix with dimension (2N+1)${\times}$(2N+1) to obtain the angular innovations of N targets. In this paper, a new linear equation for angular innovation is proposed using the fact that the projection error is zero when the target steering vector is projected onto the signal subspace. As a result, the proposed algorithm dose not require the matrix inversion and is computationally efficient.

  • PDF

Fast DOA Estimation Algorithm using Pseudo Covariance Matrix (근사 공분산 행렬을 이용한 빠른 입사각 추정 알고리듬)

  • 김정태;문성훈;한동석;조명제;김정구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • This paper proposes a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate incidence angles of incoming signals using a pseudo covariance matrix. The conventional subspace DOA estimation methods such as MUSIC (multiple signal classification) algorithms need many sample signals to acquire covariance matrix of input signals. Thus, it is difficult to estimate the DOAs of signals because they cannot perform DOA estimation during receiving sample signals. Also if the D0As of signals are changing rapidly, conventional algorithms cannot estimate incidence angles of signals exactly. The proposed algorithm obtains bearing response and directional spectrum after acquiring pseudo covariance matrix of each snapshot. The incidence angles can be exactly estimated by using the bearing response and directional spectrum. The proposed DOA estimation algorithm uses only concurrent snapshot so as to obtain covariance matrix. Compared to conventional DOA estimation methods. The proposed algorithm has an advantage that can estimate DOA of signal rapidly.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

Appearance-based Robot Visual Servo via a Wavelet Neural Network

  • Zhao, Qingjie;Sun, Zengqi;Sun, Fuchun;Zhu, Jihong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.607-612
    • /
    • 2008
  • This paper proposes a robot visual servo approach based on image appearance and a wavelet function neural network. The inputs of the wavelet neural network are changes of image features or the elements of image appearance vector, and the outputs are changes of robot joint angles. Image appearance vector is calculated by using eigen subspace transform algorithm. The proposed approach does not need a priori knowledge of the robot kinematics, hand-eye geometry and camera models. The experiment results on a real robot system show that the proposed method is practical and simple.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.