• Title/Summary/Keyword: Subsonic Diffuser

Search Result 20, Processing Time 0.022 seconds

The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser (축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성)

  • Park GeunHong;Kim SeHoon;Jin JungKun;Kwon SeJin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2005
  • An axisymmetric supersonic ejector equipped with a converging-diverging diffuser was built and pressure at various locations along the ejector-diffuser system was recorded with emphasis on the supersonic starting of the secondary flow. In order to find the effects of the opening size of the secondary flow, a number of openings were used with a constant primary pressure. Supersonic starting was possible only for d/D, the ratio of the opening diameter and the diffuser throat diameter, less than 0.306. for larger values of d/D, the ejection begins at subsonic secondary flow condition. With the closure of the opening, the primary flow brings the normal shock downstream of the converging-diverging diffuser And the starting of the ejector continues even after the closure was removed.

CFD Study of the Vacuum-Pump Type Subsonic/Sonic Ejector Flows (진공 펌프형 아음속/음속 이젝터 유동에 관한 수치 해석적 연구)

  • 김희동;권오식;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.26-35
    • /
    • 2000
  • This paper depicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equations in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for the subsonic/sonic ejector systems which are applicable to industrial vacuum pumps, the ejector throat area, the mixing section configuration, and the ejector throat length are changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratios, the effects of the design factors on the vacuum performance of the secondary chamber are discussed.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Numerical Investigation of Internal Flow Field for Diffuser Passage Compressor

  • Yamagami, Mai;Tsuchiya, Naoki;Kato, Dai;Kodama, Hidekazu;Yamamoto, Kazuomi;Enomoto, Shunji;Horiguchi, Yasuo;Outa, Eisuke
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.136-142
    • /
    • 2008
  • The influence of different grids on numerical prediction of subsonic compressor performance and stall was investigated. Two types of grids were examined, structured H type grid and structured O-H type grid. Evaluations were conducted by comparing the numerical results with experimental results obtained from a low-speed single-stage rig test for a new concept compressor, called diffuser passage compressor, aiming at improving tip clearance sensitivity. At low mass flow operating conditions, the numerical calculation with O-H type grid showed that the lowest mass flow operating point for which the calculation was able to converge was almost the same as the lowest steady mass flow obtained from the rig test. On the other hand, the numerical calculation with structured H type grid diverged at higher mass flow operating point. It was found that this difference was attributed to the effect of double-valuedness of H type grid that existed at leading edge on the boundary layer development on the blade surface.

  • PDF

Concept Design of a H.A.U.'s Subsonic Wind Tunnel (H대학교 아음속 풍동 개념설계)

  • Chang, J.W.;Jeon, C.S.;Kim, M.S.;Lee, Y.;Moon, H.J.;Song, B.H.;Kim, H.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.4
    • /
    • pp.92-99
    • /
    • 2005
  • A closed-circuit type wind tunnel is designed, which has a test section with the dimensions $1.2(W){\times}1.2(H){\times}3.4(L)$. A subsonic wind tunnel is designed to improves educational circumstances and promote ground tests. It is constituted of an exchangeable test section, first and second diffusers, a fan, a settling chamber, a contraction, and 4 corners. The maximum velocity in the test section is 70m/s and the contraction ratio is 6.25:1. Input power in the wind tunnel is about 96.1 kw (128.8 hp) and its energy ratio is 3.89. It has the dimension of about $7.4(W){\times}3.6(H){\times}21.7m(L)$. The wind tunnel designed in this investigation will be an effective educational and investigational equipment.

  • PDF

A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel (수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구)

  • Choi, Sang-Gil;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

An Experimental Study of the Variable Sonic/supersonic Ejector Systems (가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구)

  • Lee Jun Hee;Kim Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF