• Title/Summary/Keyword: Subsonic Cruise Missile

Search Result 2, Processing Time 0.014 seconds

Techniques of Airbreathing Propulsion System Integration Using Small Gas Turbine Engine for Subsonic Cruise Missiles (소형 가스터빈 엔진의 유도탄 체계통합 기술)

  • Jang, Jongyoun;Kim, Joon;Jung, Jaewon;Lim, Jinshik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • An airbreathing propulsion system of a subsonic cruise missile is mainly composed of a small gas turbine engine, air intake and vehicle's fuel tank. The propulsion system integration work started from engine acceptance test is finally closed by ground functional test of the missile's propulsion section, after some modifications of engine's sub-components, development of engine-related onboard systems, interface analyses, and tests. The whole process and stepwise technologies of this system integration work are described herein.

An Optimal Aerodynamic and RCS Design of a Cruise Missile (공력 및 RCS 해석 기반의 순항 유도탄 최적설계)

  • Yang, Byeong-Ju;Song, Dong-Gun;Kang, Yong-Seong;Jo, Je-Hyeon;Je, Sang-Eon;Kim, Byeong-Kwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.479-488
    • /
    • 2019
  • A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.