• Title/Summary/Keyword: Subseasonal prediction

Search Result 14, Processing Time 0.017 seconds

Subseasonal-to-Seasonal (S2S) Prediction Skills of GloSea5 Model: Part 1. Geopotential Height in the Northern Hemisphere Extratropics (GloSea5 모형의 계절내-계절(S2S) 예측성 검정: Part 1. 북반구 중위도 지위고도)

  • Kim, Sang-Wook;Kim, Hera;Song, Kanghyun;Son, Seok-Woo;Lim, Yuna;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.233-245
    • /
    • 2018
  • This study explores the Subseasonal-to-Seasonal (S2S) prediction skills of the Northern Hemisphere mid-latitude geopotential height in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment. The prediction skills are quantitatively verified for the period of 1991~2010 by computing the Anomaly Correlation Coefficient (ACC) and Mean Square Skill Score (MSSS). GloSea5 model shows a higher prediction skill in winter than in summer at most levels regardless of verification methods. Quantitatively, the prediction limit diagnosed with ACC skill of 500 hPa geopotential height, averaged over $30^{\circ}N{\sim}90^{\circ}N$, is 11.0 days in winter, but only 9.1 days in summer. These prediction limits are primarily set by the planetary-scale eddy phase errors. The stratospheric prediction skills are typically higher than the tropospheric skills except in the summer upper-stratosphere where prediction skills are substantially lower than upper-troposphere. The lack of the summer upper-stratospheric prediction skill is caused by zonal mean error, perhaps strongly related to model mean bias in the stratosphere.

Subseasonal-to-Seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric Sudden Warming (GloSea5 모형의 계절내-계절 예측성 검정: Part 2. 성층권 돌연승온)

  • Song, Kanghyun;Kim, Hera;Son, Seok-Woo;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.123-139
    • /
    • 2018
  • The prediction skills of stratospheric sudden warming (SSW) events and its impacts on the tropospheric prediction skills in global seasonal forecasting system version 5 (GloSea5), an operating subseasonal-to-seasonal (S2S) model in Korea Meteorological Administration, are examined. The model successfully predicted SSW events with the maximum lead time of 11.8 and 13.2 days in terms of anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), respectively. The prediction skills are mainly determined by phase error of zonal wave-number 1 with a minor contribution of zonal wavenumber 2 error. It is also found that an enhanced prediction of SSW events tends to increase the tropospheric prediction skills. This result suggests that well-resolved stratospheric processes in GloSea5 can improve S2S prediction in the troposphere.

A Prediction of Precipitation Over East Asia for June Using Simultaneous and Lagged Teleconnection (원격상관을 이용한 동아시아 6월 강수의 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.711-716
    • /
    • 2016
  • The dynamical model forecasts using state-of-art general circulation models (GCMs) have some limitations to simulate the real climate system since they do not depend on the past history. One of the alternative methods to correct model errors is to use the canonical correlation analysis (CCA) correction method. CCA forecasts at the present time show better skill than dynamical model forecasts especially over the midlatitudes. Model outputs are adjusted based on the CCA modes between the model forecasts and the observations. This study builds a canonical correlation prediction model for subseasonal (June) precipitation. The predictors are circulation fields over western North Pacific from the Global Seasonal Forecasting System version 5 (GloSea5) and observed snow cover extent over Eurasia continent from Climate Data Record (CDR). The former is based on simultaneous teleconnection between the western North Pacific and the East Asia, and the latter on lagged teleconnection between the Eurasia continent and the East Asia. In addition, we suggest a technique for improving forecast skill by applying the ensemble canonical correlation (ECC) to individual canonical correlation predictions.

Two Overarching Teleconnection Mechanisms Affecting the Prediction of the 2018 Korean Heat Waves

  • Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.511-519
    • /
    • 2022
  • Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study (GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례)

  • Dong-Chan Hong;Hyeon-Seon Park;Seok-Woo Son;Joowan Kim;Johan Lee;Yu-Kyung Hyun
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.

Prediction Skill of GloSea5 model for Stratospheric Polar Vortex Intensification Events (성층권 극소용돌이 강화사례에 대한 GloSea5의 예측성 진단)

  • Kim, Hera;Son, Seok-Woo;Song, Kanghyun;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.211-227
    • /
    • 2018
  • This study evaluates the prediction skills of stratospheric polar vortex intensification events (VIEs) in Global Seasonal Forecasting System (GloSea5) model, an operational subseasonal-to-seasonal (S2S) prediction model of Korea Meteorological Administration (KMA). The results show that the prediction limits of VIEs, diagnosed with anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), are 13.6 days and 18.5 days, respectively. These prediction limits are mainly determined by the eddy error, especially the large-scale eddy phase error from the eddies with the zonal wavenumber 1. This might imply that better prediction skills for VIEs can be obtained by improving the model performance in simulating the phase of planetary scale eddy. The stratospheric prediction skills, on the other hand, tend to not affect the tropospheric prediction skills in the analyzed cases. This result may indicate that stratosphere-troposphere dynamic coupling associated with VIEs might not be well predicted by GloSea5 model. However, it is possible that the coupling process, even if well predicted by the model, cannot be recognized by monotonic analyses, because intrinsic modes in the troposphere often have larger variability compared to the stratospheric impact.

Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction (GloSea5 모형의 한반도 인근 해수면 온도 예측성 평가: 편차 보정에 따른 개선)

  • Gang, Dong-Woo;Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Johan;Hyun, Yu-Kyung;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.215-227
    • /
    • 2021
  • The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

Predictability of Northern Hemisphere Teleconnection Patterns in GloSea5 Hindcast Experiments up to 6 Weeks (GloSea5 북반구 대기 원격상관패턴의 1~6주 주별 예측성능 검증)

  • Kim, Do-Kyoung;Kim, Young-Ha;Yoo, Changhyun
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.295-309
    • /
    • 2019
  • Due to frequent occurrence of abnormal weather, the need to improve the accuracy of subseasonal prediction has increased. Here we analyze the performance of weekly predictions out to 6 weeks by GloSea5 climate model. The performance in circulation field from January 1991 to December 2010 is first analyzed at each grid point using the 500-hPa geopotential height. The anomaly correlation coefficient and mean-square skill score, calculated each week against the ECWMF ERA-Interim reanalysis data, illustrate better prediction skills regionally in the tropics and over the ocean and seasonally during winter. Secondly, we evaluate the predictability of 7 major teleconnection patterns in the Northern Hemisphere: North Atlantic Oscillation (NAO), East Atlantic (EA), East Atlantic/Western Russia (EAWR), Scandinavia (SCAND), Polar/Eurasia (PE), West Pacific (WP), Pacific-North American (PNA). Skillful predictability of the patterns turns out to be approximately 1~2 weeks. During summer, the EAWR and SCAND, which exhibit a wave pattern propagating over Eurasia, show a considerably lower skill than the other 5 patterns, while in winter, the WP and PNA, occurring in the Pacific region, maintain the skill up to 2 weeks. To account for the model's bias in reproducing the teleconnection patterns, we measure the similarity between the teleconnection patterns obtained in each lead time. In January, the model's teleconnection pattern remains similar until lead time 3, while a sharp decrease of similarity can be seen from lead time 2 in July.

Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique (다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상)

  • Lee, Seungsoo;Kim, Gayoung;Yoon, Soonjo;An, Hyunuk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.475-482
    • /
    • 2019
  • Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- /long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF's model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF's S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.