• 제목/요약/키워드: Subsea production

검색결과 29건 처리시간 0.02초

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

Subsea 생산 시스템 시뮬레이션에 관한 연구 (Study on Simulation of Subsea Production System)

  • 박주용;조효제;이승재
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.1-7
    • /
    • 2013
  • The purpose of this study was the implementation of a simulation for a subsea production system. This subsea production system is installed under environments with high pressure and low temperature. Most of the processes for oil and gas production occur in the subsea equipment. Therefore, an understanding and study of subsea production systems is very difficult because people cannot directly observe the processes occurring in the subsea production system. A simulation system can be a useful solution for this difficult problem. In this research, information models and a 3-D graphic model of the subsea equipment were built using the object-oriented technology and 3-D CAD. The entire system was implemented with the help of simulation software, 3-DVIA Virtools. The simulation system for the subsea production system was tested using several production process scenarios. The results of the tests showed that the simulation system is very useful for understanding a subsea production system and could be a good educational tool.

Subsea X-mas Tree에서의 Blockage 처리 실패에 대한 위험도 저감 방안 분석 (Analysis of Risk Control Options for Blockage Treatment)

  • 유원우;박민선;양영순
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.47-52
    • /
    • 2013
  • A subsea chemical injection system treats blockage problems in a subsea production system. It is important to treat problems quickly, because production delays cause fatal profit losses in a subsea production system. Therefore, the subsea industry requires a relatively higher reliability level for a production system compared to other industries. In this study, a subsea chemical injection system (linked to a control system) to inject chemicals into a subsea X-mas tree was analyzed. By using FSA (Formal Safety Assessment), the risk factors were defined and a quantitative risk analysis utilizing FTA (Fault Tree Analysis) and ETA (Event Tree Analysis) was performed. As a result, the effectiveness of a risk reduction option was evaluated.

해저 유정 제어 시스템에서의 누수 경로 FTA 분석 (FTA of Leakage Path in Subsea X-mas Tree System)

  • 유원우;박민선;양영순;류원선;장범선
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.85-90
    • /
    • 2013
  • The growing need for energy (oil and gas) has led to offshore resource development. As a reflection of this trend, there have been many advances in the technologies used for the subsea production systems that make offshore resource development possible. As the technologies for subsea production systems continue to grow, a subsea X-mas tree, the core equipment in a subsea production system, is required to have more functions than before. Generally, these complex functions lead to a change in its configuration. Therefore, this paper investigates a change in a subsea X-mas tree system to enhance system understanding, and conducts a leakage path analysis of a subsea X-mas tree system. Utilizing the recent configuration of the subsea X-mas tree, an identification of the leakage path and a quantitative risk analysis for the leakage using an FTA (fault tree analysis) are conducted.

Subsea System 최적 설계 요소에 관한 연구 (Study on Parameters for Optimum Design of Integrated Subsea System)

  • 최한석;도창호;이승건
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.340-349
    • /
    • 2012
  • The mitigation of gap between technology and it's applicability in the oil and gas industry has led to a rapid development of deepwater resources. Historically, subsea wells have good track records. However, an ever increasing water depths and harsher environments being encountered are currently posing challenges to subsea production. Complex subsea systems are now being deployed in ways rarely encountered in previous development schemes. These increasingly complex systems present a number of technical challenges. This study presents the challenges in subsea production systems, considering the technical and safety issues in design and installation associated with current development modality.

Merits of all-electric subsea production control system

  • Oh, Jin-Seok;Kang, Se-Ra
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.162-168
    • /
    • 2014
  • Recently, researches on all-electric subsea system have been in progress. This paper describes a subsea tree using a lot of electrical signal and subsea control system. The way of subsea control is classified as all-electric systems or electro hydraulic systems. One of that has more merits in terms of cost, weight, power consumption, etc. because it uses electric signal instead of hydraulic signal. This paper describes the difference of each system's power consumption and simulation. As the result, if each system applies the same number of sensors, actuators, etc. The power consumption of all-electric system's load is less than at least 400kWh/day compared to the electro hydraulic system load.

Development of a Prototype Data Logger System to Operate under Extreme High Pressure

  • Yoo, Nam-Hyun;Rhee, Sang-Yong;Lee, Hyeong-Ok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.113-121
    • /
    • 2014
  • A subsea oil production system must be safely operated for 20-30 years after being installed. Because of the severe conditions of the subsea environment, such as extreme high pressure, low visibility, the possibility of unexpected impact by any object, and corrosion by seawater, subsea oil production systems should be monitored by subsea data logger systems and remotely operated vehicles to check for abnormal vibration and leakage to prevent a catastrophic accident. Because of the severity of subsea environmental conditions and the dominance of a few companies in the market, many people have thought that it would be difficult to develop a subsea data logger system. The primary objectives of the study described in this paper were to analyze existing subsea data logger systems to establish the requirements for a subsea data logger system, implement a prototype subsea data logger system, and conduct a test of the prototype subsea data logger system.

심해저 원유 생산용 매니폴드 프레임 구조 기본 설계 (Basic Design of Deep Subsea Manifold Frame Structure for Oil Production)

  • 박세용;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.207-216
    • /
    • 2015
  • Amanifold is one of the essential subsea oil and gas production components to simplify the subsea production layout. It collects the production fluid from a couple of wellheads, transfers it to onshore or offshore storage platforms, and even accommodates water and gas injection flowlines. This paper presents the basic design procedure for a manifold frame structure with novel structural verification using in-house unity check codes. Loads and load cases for the design of an SIL 3 class-manifold are established from a survey of relevant industrial codes. The basic design of the manifold frame is developed based on simple load considerations such as the self weights of the manifold frame and pipeline system. In-house software with Eurocode 3 embedded, called INHA-SOLVER, makes it possible to carry out code checks on the yield and buckling unities. This paper finally proves that the new design of the manifold frame structure is effective to resist a permanent and environment load, and the in-house code is also adaptively combined with the commercial finite element code Nastran.

In-line형 심해 유수분리기의 분리 효율에 관한 연구 (A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator)

  • 김현지;김귀남;김영주;우남섭;허선철
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

Sub-sea 트리 튜빙 행어(tubing hanger)의 구조 신뢰성 해석 (Structural Reliability Analysis of Subsea Tree Tubing Hanger)

  • 김현진;양영순;김성희
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.212-219
    • /
    • 2014
  • As subsea production has been revived up, the demand of subsea equipment has also been increased. Among the equipment, subsea tree plays a major role in safety. The tubing hanger is one of the most important components in subsea tree. In this study structural reliability analysis on dual bore tubing hanger of subsea tree is performed. The target reliability which is introduced in ISO regulation is used for judging whether tubing hanger is safe or not. The considered loads are working pressure, working temperature and suspended tubing weight. Thermal-stress analysis on tubing hanger is performed and kriging model is created based on the results of FEM analysis. According to von Mises criterion, limit state equation can be estimated. Reliability analysis is performed by using level 2 method and the result is verified by that of Monte Carlo Simulation. For finding most probable failure point, enhanced HL-RF method is adopted. Because the reliability of model doesn't reach target reliability, an improvement measure should be considered. Thus, it is suggested to change the material of tubing hanger main body to AISI 4140.