• Title/Summary/Keyword: Submucosa tissue

Search Result 32, Processing Time 0.021 seconds

The Study on the Anti-Allergic Rhinitis Effects of Gamigyejitang (focus on histological changes) (가미계지탕(加味桂枝湯)이 알레르기 비염에 미치는 효과에 대한 연구)

  • Park, Jin-Mee;Sim, Sung-Yong;Byun, Hak-Sung;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.18 no.1
    • /
    • pp.234-240
    • /
    • 2005
  • This study is for Gamigyejitang's effects on the histological change s of allergic rhinitis. for this purpose, the changes of the mucosa epithelium and the submucosa tissue of nose were observed and the effects on neutrophil count and eosinophil count in blood were estimated. The rats were divided into normal group, control group and experimental group. Control group was administered normal saline and experimental group was administerd Gamigyejitang. The results obtained were as follows: 1. The epithelium layer of experimental group was restored to normal thickness and state nearly. 2. The submucosa tissue of experimental group was restored to normal state nearly. 3. The neutrophil count and eosinophil count were decreased in the experimental group(Gamigyejitang treated group) as compared with the control group but not significantly. According to above results, it is supposed that Gamigyejitang has considerable effect on allergic rhinitis and could be applicated to treat the nasal mucosa edema and several symptoms.

  • PDF

Rectal stricture in a finishing swine : Case

  • Seol, Min-Sug;Hur, Boo-Hong;Kiku Matsuda;Lim, Chae-Woong;Song, Hee-Jong
    • Korean Journal of Veterinary Service
    • /
    • v.24 no.4
    • /
    • pp.375-377
    • /
    • 2001
  • Rectal stricture occurred in 2 finishing pigs submitted for necropsy from Moguchon, the meat processing plant, chonbuk. Grossly, the wall of the rectum was harden and thickened by fibrous tissue. Anteriro to the stricture, the descending colon was dilated up to 30cm in diameter, filled with gas and pasty green fluidal feces. Histologically, the epithelia of rectal mucosa were necrotized. The mucosa and submucosa of rectum were infiltrated by macrophages, eosinophils and lymphocytes. This infiltration was the most extensive in the deeper layer of submucosa and intensive fibrosis was observed in deeper submucosa layer. This case is report for rectal stricture of finishing pig.

  • PDF

Preparation and Characterization of Tissue Engineered Scaffold Using Porcine Small Intestinal Submucosa and Hyaluronic Acid (돼지의 소장점막하 조직과 히알루론산을 이용한 조직공학적 담체의 제조 및 특성분석)

  • Lim, Ji-Ye;Kim, Soon-Hee;Kang, Gil-Son;Rhee, John M.
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.415-420
    • /
    • 2008
  • The porcine small intestinal submucosa (SIS) without immunorejection responses and hyalunonic acid (HA) can be used as biomaterials. In this study, we tried to design and characterize novel sponge. SIS- HA sponge was prepared by freeze-drying after addition 1wt% HA solution into fabricated SIS sponge. Sponge was crosslinked with 1-ethyl-(3-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) solution with 100mM concentration for 24 hrs and lyophilized. SIS-HA sponge was characterized by scanning electron microscopy and fourier transform infrared spectrometer. And water absorption ability of sponge was evaluated. We seeded NIH/3T3 cells in SIS-HA sponge and cellular attachment was assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltertazolium-bromide (MTT) test. We demonstrated presence of HA in SIS-HA sponge from C-O functional group observed by the FT-IR analysis. Moreover, we confirmed low cytotoxicity and high cell viability of the SIS-HA sponges. Therefore, we could expect that SIS- HA scaffolds are applicable for the tissue regeneration.

Rat Peripheral Nerve Regeneration Using Nerve Guidance Channel by Porcine Small Intestinal Submucosa

  • Yi, Jin-Seok;Lee, Hyung-Jin;Lee, Hong-Jae;Lee, Il-Woo;Yang, Ji-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Objective : In order to develop a novel nerve guidance channel using porcine small intestinal submucosa (SIS) for nerve regeneration, we investigated the possibility of SIS, a tissue consisting of acellular collagen material without cellular immunogenicity, and containing many kinds of growth factors, as a natural material with a new bioactive functionality. Methods : Left sciatic nerves were cut 5 mm in length, in 14 Sprague-Dawley rats. Grafts between the cut nerve ends were performed with a silicone tube (Silicon group, n=7) and rolled porcine SIS (SIS group, n=7). All rats underwent a motor function test and an electromyography (EMG) study on 4 and 10 weeks after grafting. After last EMG studies, the grafts, including proximal and distal nerve segments, were retrieved for histological analysis. Results : Foot ulcers, due to hypesthesia, were fewer in SIS group than in Silicon group. The run time tests for motor function study were 2.67 seconds in Silicon group and 5.92 seconds in SIS group. Rats in SIS group showed a better EMG response for distal motor latency and amplitude than in Silicon group. Histologically, all grafts contained some axons and myelination. However, the number of axons and the degree of myelination were significantly higher in SIS group than Silicon group. Conclusion : These results show that the porcine SIS was an excellent option as a natural biomaterial for peripheral nerve regeneration since this material contains many kinds of nerve growth factors. Furthermore, it could be used as a biocompatible barrier covering neural tissue.

Preparation and Characterization of Sponge Using Porcine Small Intestinal Submucosa (돼지의 소장 점막하 조직을 이용한 스폰지의 제조 및 특성 결정)

  • 신혜원;김선화;장지욱;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.194-200
    • /
    • 2004
  • Porcine small intestine submucosa (SIS) has been widely used as a biomaterial without immunorejection responses. Crosslinked SIS sponges were characterized for the possibility of the bio-interactive wound dressings and tissue engineered scaffolds. SIS powders were dissolved in 3% acetic acid aqueous solution at 48hrs followed by pouring into mold and then fabricated by freeze-drying method. SIS sponge was prepared by crosslinked with 1-ethyl-(3-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) solution (deionized water: ethanol=5:95) with 1-100mM concentration for 24 hrs and Iyophilized. SIS sponges were characterized by scanning electron microscopy, differential scanning calorimeter, and Fourier transform infrared spectrometer and were tested their porosity and water absorption ability. It was observed that the concentration of EDC might be exceeded 50 mM to get good physical characteristics. In conclusion, it seems that SIS sponge could be very useful for the applications of wound healing and tissue construction.

Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone (SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생)

  • Kim Soon Hee;Yun Sun Jung;Jang Ji Wook;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.

Biodisc Regeneration Using Annulus Fibrosus Cell with Hyaluronic Acid Impregnated Small Intestinal Submucosa Sponge (히알루론산이 함유된 SIS 스폰지와 섬유륜세포를 이용한 디스크재생)

  • Hong, Hee-Kyung;Lee, Seon-Kyoung;Song, Yi-Seul;Kim, Dae-Sung;Eom, Shin;Kim, Hyoung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.282-288
    • /
    • 2010
  • The porcine small intestinal submucosa (SIS) has been widely used as a biomaterial without immuno rejection responses and hyalunonic acid (HA) can be used as biocompatible materials to regenerate tissue. We developed the SIS sponge and HA loaded SIS sponges (SIS/HA) for the possibility of the application of the tissue engineering using annulus fibrosus (AF). SEM observation shows that SIS and SIS/HA sponges have interconnected and open pores. We demonstrated the presence of HA in SIS/HA sponge from C-O functional group observed by the FTIR analysis. In conclusion, we suggest that SIS/HA sponge may be useful to tissue engineering using AF cell. This may be due to the enhanced biocompatibility and higher water retention capacity of HA.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

The Effect of Transplantation of Schwann Cell and SIS Sponge on the Injured Peripheral Nerve Regeneration (슈반세포와 SIS 스폰지의 이식이 손상된 말초 신경 재생에 미치는 영향)

  • Kim, Cho-Min;Kim, Soon-Hee;Kim, Su-Mi;Park, Sang-Wook;Lee, Il-Woo;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • It is recognized that Schwann cells (SC) are essential for peripheral nerve development and regeneration. SIS (small intestinal submucosa) consists of some growth factors which can stimulate cell activity without immune rejection responges. SCs were harvested from the femurs and tibias of female Fischer rat and then suspended with $2{\times}10^6$ cell/sponge in SIS sponge. Fischer rat received an implant consisting of the SCs and the SIS sponge at the place of a 5 mm gap created by the sciatic nerve resection. Thin sections were stained with H &E staining and immunostaining of S-100, GFAP and NF after 1, 2, and 4 weeks. It was observed that the effects of the SIS sponge with SCs on neuroinduction(Group II, with scaffold & cell) are strong as much as uninjured model(Control I), and significantly stronger than SIS sponge model (Group 1, with scaffold only) and blank model (Control II). In conclusion, these results suggest that SIS sponge filled with SCs may have an important role for peripheral nerve regeneration of tissue engineering.

Evaluation of 2 techniques of epithelial removal in subepithelial connective tissue graft surgery: a comparative histological study

  • de Mattos, Paola Marques;Papalexiou, Vula;Tramontina, Vinicius Augusto;Kim, Sung Hyun;Luczyszyn, Sonia Mara;Bettega, Patricia Vida Cassi;Johann, Aline Cristina Batista Rodrigues
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.2-13
    • /
    • 2020
  • Purpose: Subepithelial connective tissue grafts (SCTGs) are commonly performed for the treatment of gingival recession due to their high predictability. This study evaluated and histologically compared connective tissue grafts in terms of the presence of epithelial remnants and composition of the tissue types that were present (epithelium, lamina propria, and submucosa). Methods: Ten patients underwent epithelium removal using 2 different techniques: the use of a blade (group B) and through abrasion (group A). Twenty samples were collected and each tissue type was analyzed histologically in terms of its area, thickness, and proportion of the total area of the graft. Results: In 4 samples (40%) from group B (n=10) and 2 samples (20%) from group A (n=10), the presence of an epithelial remnant was observed, but the difference between the groups was not statistically significant (P>0.05). Likewise, no statistically significant differences were observed between the groups regarding the area, mean thickness, or proportion of the total area for any of the tissue types (P>0.05). Conclusions: Histologically, SCTGs did not show statistically significant differences in terms of their tissue composition depending on whether they were separated from the epithelial tissue by abrasion or by using a blade.