• Title/Summary/Keyword: Subminiature

Search Result 55, Processing Time 0.03 seconds

Vibration Analysis for a Feeding Unit of Vision Inspection System of Precision Screws (정밀나사 비전검사시스템용 자동공급장치 진동특성의 해석)

  • Seo, Ye-Rin;Park, Keun;Kim, Seong-Keol;Ra, Seung-Wu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.446-451
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts have driven uses of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are micrometer scale. To produce such subminiature screws with high precision threads, not only a precision forming technology but also a high-precision measurement technology is required. The present study covers the development of a vision inspection system for precision screws for the automatic measurement of subminiature screws with high speed and reliability. In this study, the feeding unit that transfers the subminiature screws to the inspection unit is investigated through finite element(FE) analysis. The vibration characteristics of the feeding unit are predicted through FE analyses, from which we can determine whether the subminiature screw can be stably fed into the inspection unit or not. The effects of several design parameters on the vibration characteristics are also discussed.

A study on a structural analysis of the injection mold for the plastic subminiature barrel (모바일용 플라스틱 경통 금형의 구조해석에 관한 연구)

  • Chang, Sung-Ho;Heo, Young-Moo;Shin, Gwang-Ho
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.10-15
    • /
    • 2008
  • Recently, mobile-phone with camera module has an absolute majority in the released mobile-phones. For this trend, High precision of the plastic subminiature barrel which is the core part is needed significantly because the camera module of mobile-phone must have high performance. Therefore, Structural stability of the injection mold for plastic subminiature barrel has to be guaranteed. In this paper, structural analysis of injection mold for plastic subminiature barrel is performed. Finally, the deformation trend and stability of injection mold core are analyzed.

  • PDF

Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation (초소형 나사의 나사산 각도변화에 따른 체결특성 평가)

  • Min, Kyeong Bin;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.839-846
    • /
    • 2014
  • Recent trends in the miniaturization and weight reduction of portable electronic parts have driven the use of subminiature screws with a micrometer-scale pitch. As both screw length and pitch decrease in subminiature screws, the resulting clamping force becomes diminishes. In this work, Finite element (FE) analysis is performed to evaluate clamping force of a screw assembly, with a comparison with experimental result. To improve clamping force of subminiature screws, a new screw design is considered by modifying screw thread angle: the thread angle is varied as an asymmetric way unlike the conventional symmetric thread angle. FE analyses are then performed to compare the clamping characteristics of each subminiature screw with different thread angle. The effect of thread angles on the clamping force is then discussed in terms of structural safety for both positive and negative screws.

On Clamping Force Characteristics in M1.4 Subminiature Screw for CFRP Stacking Angles (M1.4 초소형 나사의 CFRP 적층 경향에 따른 체결력 특성에 관한 연구)

  • Kim, Jung Ho;Ra, Seung Woo;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.517-521
    • /
    • 2015
  • Recent development of core techniques the IT electronics industry can condense into lightweight and slimmer. In this circumstance, researches for the lightweight materials and subminiature screw have been attracted. In this study, the CFRP was produced by stacking angle to obtain the tensile properties. And Comparing the coated screws and non-coated screws on the specimen, and evaluating the adequacy for the application of CFRP using the result. So The clamping force measured by comparison evaluation. Low screw reverse and Superior torque value at each stacking angle were found the optimum conditions, when Subminiature Screw is applied on smart devices. Both tensile strength and stiffness of $[{\pm}0^{\circ}]_{10}$ is the highest. Followed by $[90^{\circ}/0^{\circ}]_{10}$ is the highest. The largest clamping torque is $[90^{\circ}/0^{\circ}]_{10}$ When Subminiature Screw is applied coating and non-coating to prevent loosening. Based on the above, Subminiature Screw should be applied in smart devices, because $[90^{\circ}/0^{\circ}]_{10}$ meet both tensile properties and clamping force.

Improvement of the Optical Characteristics of Vision System for Precision Screws Using Ray Tracing Simulation (광선추적을 이용한 정밀나사 비전검사용 광학계의 결상특성 향상)

  • Baek, Soon-Bo;Lee, Ki-Yean;Joo, Won-Jong;Park, Keun;Ra, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1094-1102
    • /
    • 2011
  • Recent trends for the miniaturization and weight reduction of portable electronic parts is the use of subminiature components. Assembly of the miniaturized components requires subminiature screws of which pitch sizes are in a micrometer scale. To produce such a subminiature screw with high precision threads, not only a precision forming technology but also high-precision measurement technique is required. In the present work, a vision inspection system is developed to measure the thread profile of a subminiature screw. Optical simulation based on a ray tracing method is used to design and analyze the optical system of the vision inspection apparatus. Through this simulation, optical performance of the developed vision inspection system is optimized. The image processing algorithm for the precision screw inspection is also discussed.

Design Approach of Q-band Precision Subminiature Coaxial Adaptor Using 3D Simulator and Its Experimental Results (3D 시뮬레이션과 측정값을 이용한 Q-band 정밀 초소형 동축 어댑터의 설계)

  • Wang, Cong;Qian, Cheng;Cho, Won-Yong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • This paper presents the design approach and test results of the Q-band precision subminiature coaxial adaptor based on transmission line theory using multi-step impedance and air-holes to increase its cutoff frequency. In order to increase the frequency performance, the adaptor is designed with hooked structure, fixing step, multi-air-holes, and outer conductor. The return loss increments due to the hooked structure and multi air-holes are minimized to 2 dB and 1.5 dB, respectively. A VSWR(Voltage Standing Wave Ratio) of <1.2 is obtained from DC to 40 GHz, while guaranteeing the durability of the adaptor from room-temperature$(25^{\circ}C)$ to $120^{\circ}C$.

  • PDF

Ultra Precision Machining Technology Development of Subminiature Optics of Proximity and Wide Field of View (초정밀 가공기를 이용한 근접초소형 광시야각 광학계 기술 개발)

  • Kim, M.S.;Yang, S.C.;Kim, H.S.;Kim, G.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-101
    • /
    • 2008
  • Due to improve form accuracy and surface roughness of a aspheric lens core that is made of Ni, the study is carried out on localization about a Subminiature Optics of Proximity and Wide Field of View. The required form accuracy P-V $0.2{\mu}m$ and surface roughness is Ra 10 nm. The design of experiment(DOE) is adopted to find a optimal cutting conditions which are spindle speed, depth of cut, feedrate. Finally, the effects of this study are replacing importation and strengthening competitiveness through the localization of the Subminiature Optics of Proximity and Wide Field of View.

  • PDF

Proposal of Antenna of Subminiature Sensor Node for Multi-sensing of Marine IoT (해양 IoT 복합 센싱을 위한 초소형 센서 노드용 안테나의 제안)

  • Lee, Seong-Real;Kim, Eui-Young;Lee, Gyu-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.472-474
    • /
    • 2019
  • We propose an antenna for subminiature sensor node in the marine IoT service based on low power wide area (LPWA) network. The proposed antenna is designed for multi-band in ISM band. The specification of the proposed antenna expressed here is also for multi-band service.

  • PDF

Investigation into Thread Rolling Characteristics of Subminiature Screws According to Thread Shapes (나사산 형상에 따른 초소형 나사 전조공정의 성형특성 고찰)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.971-978
    • /
    • 2016
  • Recent trends in miniaturization and lightness in portable electronics parts have driven developments in subminiature screws. This study aims to investigate the thread rolling process of a subminiature screw with an outer diameter and pitch of 1.0 and 0.25 mm, respectively. Finite element (FE) analyses were performed for the thread rolling process of symmetric and asymmetric screw threads. Through FE analyses, various process parameters, such as the horizontal and vertical die gap and the rolling stroke, were investigated in terms of the forming accuracy. The material flow characteristics in the thread rolling process of the symmetric and asymmetric screws were also discussed, and the relevant process parameters were determined accordingly. These simulation results were then reflected on real thread rolling processes, from which the symmetric and asymmetric screws could be formed successfully with allowable dimensional accuracy.

Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws (초소형 나사 단조시 접힘결함 향상을 위한 유한요소해석)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2015
  • Recent trends to reduce the size of mobile electronics products have driven miniaturization of various components, including screw parts for assembling components. Considering that the size reduction of screws may degenerate their joining capabilities, the size reduction should not be limited to the thread region but should be extended to its head region. The screw head is usually manufactured by forging in which a profiled punch presses a billet so that plastic deformation occurs to form the desired shape. In this study, finite element (FE) analysis was performed to simulate the forging process of a subminiature screw; a screw head of 1.7 mm diameter is formed out of a 0.82 mm diameter billet. The FE analysis result indicates that this severe forging condition leads to a generation of folding defects. FE analyses were further performed to find appropriate punch design parameters that minimize the amount of folding defects.