• Title/Summary/Keyword: Submerged Discharge

Search Result 71, Processing Time 0.023 seconds

Bed Changes downstream the Singok Submerged Weir in the Han River Estuary - from 2009 to 2010 (한강 하구 신곡수중보 하류에서 하상변동 - 2009년부터 2010년까지)

  • Hwang, Seung-Yong;Lee, Samhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.819-829
    • /
    • 2018
  • The bed change survey was carried out and its tendency was analyzed at the downstream of the Singok Submerged Weir in the Han River Estuary (HRE). In order to focus on the bed change in the low flow channel, we calculated the mean bed elevation based on the bankfull discharge. Thanks to the amount of bed changes calculated by using the 'averaged bed', we could compare the riverbeds of various periods with consistent criteria. In the HRE, revealed was the bed change cycle between degradation by flood and aggradation by tide at the non-flood season.

Performance evaluation of submerged membrane bioreactor for model textile wastewater treatment

  • Guembri, Marwa;Saidi, Neila;Neifar, Mohamed;Jaouani, Atef;Heran, Marc;Ouzari, Hadda-Imene
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.123-130
    • /
    • 2020
  • Submerged Membrane bioreactor (SMBR) is one of the last techniques that allow a high quality of treated industrial effluents by coupling biological treatment and membrane separation. Thus, this research was an effort to evaluate performance of a SMBR treating a model textile wastewater (MTWW). Different SMBR operating parameters like mixed liquor suspended solids (MLSS) and Dissolved oxygen concentration, hydraulic retention time (HRT), and nutrients addition (N and P) have been investigated. MTWW (influent to the SMBR) was generated using the reactive azo-dye, Novacron blue FNG (100mg/L feed concentration). Results of MTWW treatment using SMBR under optimal operating conditions (MLSS, 4.2-13.3g/L; HRT, 4 days; pH, 6.9-7.2; conductivity, 400-900 μS/cm and temperature, 19.4-22.2 ℃) showed that COD and blue colour treatment performances are between 94-98% and 30-80%, respectively. It is concluded that SMBR can be used in large scale textile wastewater treatment plants to improve effluent quality in order to meet effluent discharge standards.

Design of the Submerged Outlet Structure for Reducing Foam at a Power Plant using a Numerical Model Simulating Air Entrainment (공기연행 수치모형을 이용한 발전소 거품저감 수중방류구조 설계)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Young-Min;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.452-460
    • /
    • 2008
  • Anti-foaming agents and foam fences have been used to remove the foam at the outfall of power plants, but there are some problems as consumption of maintenance costs and insufficiency of effect. Therefore, development of the methods how to remove the foam by stable coastal structure has been required. In this study, numerical simulation of air entrainment was carried out to design the submerged outlet structure for reducing foam using curtain walls. The air entrainment rate and the discharge of entrained air change according to the shape of weir and curtain wall. Hence, it is necessary to design the optimum section through comparison of each case. The optimum section which has the maximum rate of foam reduction was determined by the simulation results. In addition, it was found that the flow velocity at the submerged outlet is to be smaller than 1 m/s and the submerged depth of curtain wall is to be taller than height of the submerged outlet section.

Superelevation and Bed Variation Due to Attack Angle of Submerged Vanes in Curved Channel (수제 입사각에 따른 개수로 만곡부의 편수위와 하상변동)

  • Park, Sang Deog;Paik, Joongcheol;Jeon, Woo Sung;Lee, Hyun Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.297-306
    • /
    • 2019
  • Since the centrifugal force acts on the flow in the curved channel, a transverse water surface gradient occurs and the thalweg is biased toward the outer bank. The submerged vanes may be used to solve various engineering problems of the curved channels. In order to analyze the influence of an attack angle and the distance between the vane arrays on the river bed variation and the superelevation in a bend, movable bed hydraulic experiments were conducted in a $90^{\circ}$ curved rectangular channel of a small-size gravel bed. Installing the submerged vanes in the bend increases the maximum scour depth. But if vanes are installed in a uniform obtuse angle, the scour depth may be reduced. If the flow rate in the channel bend with vanes equals to the channel forming discharge, the location of the maximum scour depth moved to the downstream and the superelevation increased. However if the flow rate is smaller than that, the location of the maximum scour depth moved upstream and the superelevation decreased. The channel bed change and the superelevation due to the installation of the submerged vanes have been dependent on the interaction of the attack angle, the flow rate, and the distance between the arrays.

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

Morphological Characteristics of Conidiogenesis in Cordyceps militaris

  • Shrestha, Bhushan;Han, Sang-Kuk;Yoon, Kwon-Sang;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Conidial development of Cordyceps militaris was observed from germinating ascospores and vegetative hyphae through light and scanning electron microscopy (SEM). Ascospores were discharged from fresh specimens of C. militaris in sterile water as well as Sabouraud Dextrose agar plus Yeast Extract (SDAY) plates. We observed ascospore germination and conidial formation periodically. Under submerged condition in sterile water, most part-spores germinated unidirectionally and conidia were developed directly from the tips of germinating hyphae of part-spores within 36 h after ascospore discharge, showing microcyclic conidiation. First-formed conidia were cylindrical or clavate followed by globose and ellipsoidal ones. Germination of ascospores and conidial development were observed on SDAY agar by SEM. Slimy heads of conidia on variously arranged phialides, from solitary to whorl, developed 5 days after ascospore discharge. Besides, two distinct types of conidia, elongated pyriform or cylindrical and globose, were observed in the same slimy heads by SEM. Conidia were shown to be uninucleate with 4,6-diamidino-2-phenylindole staining. Conidiogenous cells were more slender than vegetative hyphae, having attenuated tips. Microcyclic conidiation, undifferentiated conidiogenous hyphae (phialides), polymorphic conidia and solitary, opposite to whorled type of phialidic arrangement are reported here as the characteristic features of asexual stage of C. militaris, which can be distinguished from other Cordyceps species.

Uncertainty analysis for Section-by-Section method of ADCP discharge measurement based on GUM standard (GUM 표준안 기반 ADCP 지점 측정 방법 유량 측정 불확도 분석)

  • Kim, Dongsu;Kim, Jongmin;Byeon, Hyunhyuk;Kang, Junkoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.521-535
    • /
    • 2017
  • Acoustic Doppler Current Profilers (ADCPs) have been widely utilized for assessing streamflow discharge, yet few comprehensive studies were conducted to evaluate discharge uncertainty in consideration of individual uncertainty components. It could be mostly because it was not easy to determine which uncertainty framework can be appropriate to rigorously analyze streamflow discharge driven by ADCPs. In this regard, considerable efforts have been made by scientific and engineering societies to develop a standardized theoretical framework for uncertainty analysis in hydrometry. One of the well-established UA methodology based on sound statistical and engineering concepts is Guide to the Expression of Uncertainty Measurement (GUM) adopted widely by various scientific and research communities. This research fundamentally adapted the GUM framework to assess individual uncertainty components of ADCP discharge measurements, and subsequently provided results of a customized experiment in a controllable real-scale artificial river channel. We focused particularly upon sensitivities of uncertainty components in the GUM framework driven by ADCPs direct measurements such as depths, edge distance, submerged depth, velocity gap, sampling time, repeatability, bed roughness and so on. Section-by-Section method for ADCP discharge measurement was applied for uncertainty analysis for this study. All of measurements were carefully compared with data using other instrumentations such as ADV to evaluate individual uncertainty components.

Increase of Spillway Discharge by Labyrinth Weir (래버린스위어에 의한 여수로 배제유량 증대)

  • Seo, Il Won;Song, Chang Geun;Park, Se Hoon;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.11-20
    • /
    • 2008
  • The spillway type of small and midsize dams in Korea is almost overflow weir. To examine flood control capacity of overflow spillway, FLOW-3D was applied to Daesuho dam and analysis was focused on the discharge of dam spillway by changing weir shape. Overflow phases and discharges of linear labyrinth weir and curved labyrinth weir were compared with those of existing linear ogee weir. Hydraulic model experiment was performed to verify numerical result. Verification results showed that overflow behaviors and flow characteristics in the side channel by hydraulic model experiment and numerical simulation are well matched, and water surface elevation at side wall coincides with each other. When the reservoir elevation was increased up to design flood level, in case of the linear ogee weir the flow over the crest ran through smoothly in the side channel, whereas in cases of linear labyrinth weir and curved labyrinth weirs, the flow discharge was increased by 40 cms, and the flow over the weir crest, rotating counter-clockwise, was submerged in the side channel. The results of the water level-discharge curve revealed that labyrinth weir can increase discharge by 71% compared to the discharge of linear ogee weir at low reservoir elevation since it can have longer effective length. But as water surface elevation rises, the slope of water level-discharge curve of labyrinth weir becomes milder by submergence and nappe interference in the side channel.

Analysis of Discharge Characteristics and Fire Risk of Mobile Phone Batteries according to the Concentration of Salt Water (염수농도에 따른 휴대폰 배터리의 방전특성과 화재 위험성 분석)

  • Woo, Jin-Su;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.66-71
    • /
    • 2020
  • The process of discharging batteries using salt water, when used for the disposal of a lithium-ion (Li-ion) batteries, is likely to cause a fire. However, there is a dearth of studies in the literature on the risk of fire while discharging mobile phone batteries in salt water. In order to investigate the possibility of fire by elucidating the discharge characteristics and the generation of heat, we conducted experiments by varying the concentration of the salt water, number of overlapping batteries, and type of the mobile phone batteries used as experimental specimen. The discharging voltage and the temperature of the batteries were measured, and the fire risk was predicted by analyzing the data. The results of the experiment showed that the higher the salt water concentration, the greater the discharge value of the mobile phone battery and the higher the exothermic temperature. Moreover, the exothermic temperatures of the overlapping batteries were higher than that of the single battery submerged in salt water. The highest exothermic temperature points of the battery occurred at the positive and negative poles.

Hydraulic Characteristic Analysis of Final Closing considering Non-Darcy Flow (Non-Darcy 흐름특성을 고려한 최종체절 수리특성분석)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.613-622
    • /
    • 2004
  • The simulation results of final closing by the developed model considering the flows through tide embankment of non-Darcy and through sluice gate agree well to the observed data which shows the model applicability. In comparative analysis with observed data, the simulation results by Homma(1958) are more accurate than those by Na(1987). The free flow equation with discharge coefficient, regardless of free or submerged flows, by Na based on the submergence ratio is applicable to the engineering practices. Because two simulated discharges are greater than the actual one, the correction of discharge coefficients reflecting the irregular section of actual closing gap situation is necessary. In the hydraulic analysis of final closing, the flow through tide embankment has been generally analysed by Darcy. Hydraulic analysis by the correct discharge through tide embankment of non-Darcy flow is necessary, because the ratio between flows through tide embankment and closing gap is relatively great at final closing.