Browse > Article
http://dx.doi.org/10.3741/JKWRA.2004.37.8.613

Hydraulic Characteristic Analysis of Final Closing considering Non-Darcy Flow  

Choi, Hung-Sik (상지대학교 이공과대학 건설시스템공학과)
Publication Information
Journal of Korea Water Resources Association / v.37, no.8, 2004 , pp. 613-622 More about this Journal
Abstract
The simulation results of final closing by the developed model considering the flows through tide embankment of non-Darcy and through sluice gate agree well to the observed data which shows the model applicability. In comparative analysis with observed data, the simulation results by Homma(1958) are more accurate than those by Na(1987). The free flow equation with discharge coefficient, regardless of free or submerged flows, by Na based on the submergence ratio is applicable to the engineering practices. Because two simulated discharges are greater than the actual one, the correction of discharge coefficients reflecting the irregular section of actual closing gap situation is necessary. In the hydraulic analysis of final closing, the flow through tide embankment has been generally analysed by Darcy. Hydraulic analysis by the correct discharge through tide embankment of non-Darcy flow is necessary, because the ratio between flows through tide embankment and closing gap is relatively great at final closing.
Keywords
non-Darcy flow; tide embankment; final closing; submergence ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 하구둑 최종물막이 시에 내수위 예측을 위한 유량계수 결정 /
[ 김채수 ] / 동국대학교 대학원 박사학위논문
2 김채수 (1988), 하구둑 최종물막이 시에 내수위 예측을 위한 유량계수 결정. 동국대학교 대학원 박사학위논문
3 나정우 (1987). 방조제 체절구간에서의 수리특성에 관한 실험적 연구. 서울대학교 대학원 석사학위논문
4 최흥식 (2004). '호안제체에서 non-Darcy 흐름해석.' 한국수자원학회논문집, 제37권, 제2호, pp. 97-96   과학기술학회마을   DOI
5 농림부 (1971). 농지개량사업 계획설계기준 해면간척편. p. 144
6 本間仁, 石原藤次郞 (1958). 應用水理學, 丸善. pp. 154-156
7 이승한, 박형섭 (2001). '호안제체 투수계수 및 최종체절구간을 통한 흐름의 유량계수.' 대한토목학회지, 제49권, 제12호, pp. 105-109
8 Barrett, J.W. and Skogerboe, G.V. (1973). 'Computing backwater at open channel constrictions.' Journal of Hydraulics Division, ASCE, Vol. 99, No. HY7, pp. 1043-1056
9 Kindvater, C.E., Carter, R.W., and Tracy, H.J. (1953). Computation of peak discharge at constrictions. U.S. Geological Survey, Circ. 284
10 Fiuzat, A.A. and Skogerboe, G.V. (1983). 'Comparison of open channel constriction ratings.' Journal of Hydraulics Division, ASCE, Vol. 109, No. 12, pp. 1589-1602   DOI
11 Lane, E.W. (1920). 'Experiments on the flow of water through contractions in an open channel.' Transaction, ASCE, Vol. 83, pp. 1149-1208
12 Taylor, D.W. (1948). Fundamentals of soil mechanics. John Wiley and Sons Inc., New York
13 Li, B., Garga, V.K., and Davies, M.H. (1998). 'Relationship for non-Darcy flow in rockfill.' Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 2, pp. 206-212   DOI   ScienceOn
14 Kindvater, C.E. (1964). Discharge characteristics of embankment-shaped weirs. U.S. Geological Survey, Water-Supply, Paper 1617-A
15 Skogerboe, G.V. and Hyatt, M.L. (1967). 'Analysis of submergence in flow measuring flumes.' Journal of Hydraulics Division, ASCE, Vol. 93, No. HY4, pp. 183-200
16 Stephenson, D. (1979). Rockfill in hydraulic engineering. Elsevier Science Pub. BV (North-Holland), Amsterdam, The Netherlands, pp. 19-24
17 Woodburn, J.G. (1932). 'Test of broad-crested weirs.' Transaction, ASCE, Vol. 96, pp. 387-416
18 Skogerboe, G.V., Austin, L.H., and Chang, K.T. (1970). Subcritical flow of open channel structures. Bridge Constrictions PRWG 71-2, Utah Water Research Laboratory, Utah State University, Logan, Utah
19 Thomas, W.A. (1966). Submerged weir characteristics. M.S. Thesis, Department of Civil and Sanitary Engineering, MIT, Cambridge, Massachusetts