• Title/Summary/Keyword: Submarine topography

Search Result 40, Processing Time 0.031 seconds

An Analysis of Accuracy for Submarine Topographic Information by Interpolation Method (보간기법에 따른 해저지형의 정확도 분석)

  • Kim Ga-Ya;Moon Doo-Youl;Seo Dong-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.67-76
    • /
    • 2006
  • Three-dimensional information of submarine topography was acquired by assembling DGPS and Echo Sounder, which is mainly used in the marine survey. However, the features of submarine topography, derived according to mechanical data, were confirmed using human eyes. Because the dredging capacity using a submarine surveying data influences harbor public affairs, analysis and the process method of surveying data is a very special element in construction costs. In this study, information on submarine topography is acquired by assembling DGPS and Echo Sounder. Moreover, the dredging capacity in harbor public affairs has been analyzed by the interpolation method: inverse distance to a power, kriging, minimum curvature, nearest neighbor, and radial basis function. Also, utilization of DGPS and Echo Sounder method in calculation of the dredging capacity have been confirmed by comparing and analyzing the dredging capacity and the actual one, as per each interpolation. According to this comparison result, in the case of applying Radial basis function interpolation and Kriging, 3.94 % and 4.61 % of error rates have been shown, respectively. In the case of the study for application of the proper interpolation, as per characteristics of submarine topography, is preceded in calculation of the dredging capacity relevant to harbor public affairs, it is expected that more speedy and correct calculation for the dredging capacity can be made.

Selecting of Interpolation for Extraction of Optimal Submarine Topographic Information. (최적해저지형정보 추출을 위한 보간법 선정)

  • 이종출;김희규;김남식;김성호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.571-576
    • /
    • 2004
  • In this study, we selected the most effective interpolation method using both the data of sounding the depth of submarine topography and volume-production computer program. After processing the data by volume-production program, and then we selected the most effective interpolation method which nearest actual value of dredged soil quantity. Thus, these interpolation could be used for describing the optimal submarine topography.

  • PDF

Experiments on the Submarine Cable Protection Methods Considering the Connection Type (체결형상을 고려한 해저케이블 보호공법에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.329-329
    • /
    • 2017
  • In this study attempted to evaluate the stability of the protection methods by examining hydraulic characteristics of the area around the point in which marine cable protector is installed such as surf zone occurrence point of shore-end submarine cables suitable for coastal marine environmental conditions, flow rate t the tope of the protector and maximum wave height, and to provide basic data for the selection of the optimal protection method. In performing hydraulic model experiments, the topography of submarine cable installation location was reproduced in 2-D sectional channel, and models appropriate for experimental scale and similitude law were produced and installed for each condition of submarine cables and protectors. Since the topography and submarine cable protectors were reproduced and installed in 2-D sectional channel, the exact reproduction of surf and transformation in shallow water zone was possible, and thus the physical properties could be clearly analyzed. For stability review, an experiment to examine the stability was conducted using a wave maker with 50-year frequency design waves as target, and wave height and cycles were applied based on the approximate lowest low water level(Approx. L.L.W), which is the most dangerous in submarine cable protection methods. As for experimental time, typhoon passing time in summer (about 3 hours) was applied, and wave patterns and deviation ratio of the submarine cable protector were investigated after making irregular waves corresponding to design waves. In addition, current meter and wave height meter were installed at the installation location of the submarine cable protector, and the flow rates and wave height at the top of the protector were measured and analyzed to review hydraulic properties.

  • PDF

A Study on the Observations of Riverbed Topography Using Multibeam Echo-Sounder Near Baeckma River Leisure Park (멀티빔 음향측심기를 이용한 하상지형 관측에 관한 연구: 백마강 레저파크를 중심으로)

  • Yun, Kong-Hyun;Yang, Joo-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • With the recent development of bathemetry technology, the hydrographic surveying method has been changed from single beam depth device use to multi beam acoustic sounding technology. Also, various studies have been reported to obtain high accuracy and precision in the process of river bed topographic data. Especially south korea is geographically on three sides of the sea and the river topography is very developed. To build information about the underwater, and riverbed status, the public investigations has been continuously progressed. In this study, We investigasted the riverbed topography near Baeckma river leisure park. for this purpose, In this study, as the first preliminary survey, location of navigational dangerous objects and reefs and the dangerous areas are identified. Also, ground control points is selected for the optimal GPS surveying. Secondary, through test surveying the Gain, TVG, and pulse length are determined. In addition, the investigation of dangerous objects for navigation is also conducted. As the last step, the error analysis are conducted for the acquired data, and this process involves the removal and adjustments of errors. This section includes the analysis of tide level and navigational contributions, and finally generates a submarine topographic map.

A Study on the 3-D Digital Modelling of the Sea Bottom Topography (3차원 해저지형 수치모델에 관한 연구)

  • 양승윤;김정훈;김병준;김경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • In this study, 3-dimensional virtual visualization was performed for a rapid and accurate analysis of sea bottom topography. The visualization was done through the extracted data using the developed program and the generated data using the gridding method. The data extraction program was developed with AutoLISP programming language and this program was able to extract the needed sample bathymetry data from the electronic sea chart systematically as well as effectively The gridded bathymetry data were generated by the interpolation or extrapolation method from the spatially-irregular sample data. As the result of realization for the 3-dimensional virtual visualization, it was shown a proper feasibility in the analysis of the sea bottom topography to determine the route of submarine cable burial.

A Study on the 3-D Digital Modelling of the Sea Bottom Topography (3차원 해저지형 수치모델에 관한 연구)

  • 양승윤;김정훈;김병준;김경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2002
  • In this study, 3-dimensional virtual visualization was performed for a rapid and accurate analysis of sea bottom topography, The visualization was done through the extracted data using the developed program and the generated data using the gridding method. The data extraction program was developed with AutoLISP programming language and this program was able to extract the needed sample bathymetry data from the electronic sea chart systematically as well as effectively. The gridded bathymetry data were generated by the interpolation or extrapolation method from the spatially-irregular sample data. As the result of realization for the 3-dimensional virtual visualization, it was shown a proper feasibility in the analysis of the sea bottom topography to determine the route of submarine cable burial.

Shallow Crustal Structure of the Bransfield Basin Using an Autonomous Underwater Hydrophone

  • Kim, Kee-Hoon;Park, Min-Kyu;Hong, Jong-Kuk;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2006
  • We investigated subsurface structures of the Bransfield Basin, the Antarctic with AUH (Autonomous Underwater Hydrophne) which was designed to record abyssal T-waves generated from submarine earthquakes. The data obtained from a multi-channel seismic survey and an AUH were used for this study. A seismic reflection method was applied to the multi-channel seismic survey data in order to identify bathymetry and sedimentary structures, and the signals recorded in the AUH were used to obtain deep structures as we applied a seismic refraction method. Even though we couldn’t investigate deeper and detailed structure in study area because of lack of Airgun’s capacity, the AUH showed possibilities for being used for a marine seismic survey. From this experiment, we decided the upper and lower sediment layer velocities, detected irregular basement topography probably caused by submarine volcanic/magmatic activities, and retrieved the velocity of the basement and the depth of the sediment layer/basement boundary.

  • PDF

The Stability Riprap on Scattered Submerged Breakwater due to Physical Model (난적잠제 상부 사석의 안정에 관한 실험적 연구)

  • Park, Sang-Kil;Kim, Woo-Saeng;Lee, Jae-Sung;Kim, Sung-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • This study described the stability of riprap, which was examined by a two-dimensional physical model of a scattered riprap submarine breakwater. Artificial reef structures made of scattered riprap are used like artificial intertidal zone structures as waterfront seaside structures. To prevent topography change in such an artificial intertidal zone the energy is reduced at the scattered riprap submarine breakwater by intercepting high waves. The breaking waves are converted into flow on the front surface slope of the submarine breakwater, which follows the upper part of the artificial intertidal zone. Because of this phenomenon of resisting water flow, it is very important to calculate the required weight of the riprap to maintain its stability. The results of a physical model can be abstracted as shown below. First, distribute the wave breaking types occurring on the front surface slope of the submarine breakwater and arrange it in relation to the movement of riprap. Second, using the hydraulic phenomenon that occurs at the depth of the scattered riprap submarine breakwater, propose a calculation formula for the velocity distribution showing the influence on the stability of the riprap. Third, propose and compare values, which can be obtained by experiments and calculations for riprap stability on the front surface of the artificial intertidal zone. Fourth, calculate the required weight for riprap stability.

Numerical Analysis of Shallow Water Equation with Fully Implicit Method (음해법을 이용한 천수방정식의 수치해석)

  • Kang, Ju Whan;Park, Sang Hyun;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 1993
  • Recently, ADI scheme has been a most common tool for solving shallow water equation numerically. But ADI models of tidal flow is likely to cause so called ADI effect in such a region of the Yellow Sea which shows complex topography and has submarine canyons especially. To overcome this, a finite difference algorithm is developed which adopts fully implicit method and preconditioned conjugate gradient squared method. Applying the algorithm including simulation of intertidal zone to Sae-Man-Keum. velocity fields and flooding/drying phenomena are simulated well in spite of complex topography.

  • PDF

Seafloor Features around the Hupo Bank on the East Sea (동해 후포퇴(Hupo Bank) 주변의 정밀 해저지형 연구)

  • Choi, Sung-Ho;Ahn, Young-Kil;Han, Hyuk-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.93-96
    • /
    • 2008
  • We analyze a precise seabed feature around the Hupo Bank by using Multi-beam echosounder. Multi-beam echosounder system can observe the topography undulation according to the navigation of the survey ship by shooting wide beam. It is possible to embody a precision seabed feature because it can be make high density of incompletion depth sounding between survey lines. Through this survey, there is the Hupo Bank which is 84 km long, 1-15 km wide, 5.3-160 m deep in the center, at the west is moat, at the east is scarp and submarine canyon. The top of the Hupo Bank is the Wangdol reef that has 5.3 m in depth of water at least. Moat in survey area is 30 m long, and 30-40 m wide and has a depressed channel. The gap of depth of water in scarp is approximately 60 m and shows a characteristic of cuttig plane. Submarine canyon is 3.5 - 13.5 km wide.

  • PDF