• Title/Summary/Keyword: Subcriticality monitoring

Search Result 3, Processing Time 0.019 seconds

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Neutronic and thermohydraulic blanket analysis for hybrid fusion-fission reactor during operation

  • Sergey V. Bedenko ;Igor O. Lutsik;Vadim V. Prikhodko ;Anton A. Matyushin ;Sergey D. Polozkov ;Vladimir M. Shmakov ;Dmitry G. Modestov ;Hector Rene Vega-Carrillo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2678-2686
    • /
    • 2023
  • This work demonstrates the results of full-scale numerical experiments of a hybrid thorium-containing fuel plant operating in a state close to critical due to a controlled source of D-T neutrons. The proposed facility represented a level of generated power (~10-100 MWt) in a small pilot. In this work, the simulation of the D-T neutron plasma source operation in conjunction with the facility blanket was performed. The fission of fuel nuclei and the formation of spatial-energy release were studied in this simulation, in pulsed and stationary modes of the facility operation. The optimization results of neutronic and fluid dynamics studies to level the emerging offsets of the radial energy formed in the volume of the facility multiplying part due to the pulsed operation of the D-T neutron plasma source were presented. The results will be useful in improving the power control-based subcriticality monitoring method in coupled systems of the "pulsed neutron source-subcritical fuel assembly" type.