DOI QR코드

DOI QR Code

Neutronic and thermohydraulic blanket analysis for hybrid fusion-fission reactor during operation

  • Sergey V. Bedenko (Tomsk Polytechnic University) ;
  • Igor O. Lutsik (Tomsk Polytechnic University) ;
  • Vadim V. Prikhodko (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences) ;
  • Anton A. Matyushin (Joint Stock Company OKB Gidropress) ;
  • Sergey D. Polozkov (Tomsk Polytechnic University) ;
  • Vladimir M. Shmakov (Federal State Unitary Enterprise ) ;
  • Dmitry G. Modestov (Federal State Unitary Enterprise ) ;
  • Hector Rene Vega-Carrillo (Academic Unit of Nuclear Studies of the Autonomous University of Zacatecas)
  • Received : 2022.09.17
  • Accepted : 2023.03.26
  • Published : 2023.07.25

Abstract

This work demonstrates the results of full-scale numerical experiments of a hybrid thorium-containing fuel plant operating in a state close to critical due to a controlled source of D-T neutrons. The proposed facility represented a level of generated power (~10-100 MWt) in a small pilot. In this work, the simulation of the D-T neutron plasma source operation in conjunction with the facility blanket was performed. The fission of fuel nuclei and the formation of spatial-energy release were studied in this simulation, in pulsed and stationary modes of the facility operation. The optimization results of neutronic and fluid dynamics studies to level the emerging offsets of the radial energy formed in the volume of the facility multiplying part due to the pulsed operation of the D-T neutron plasma source were presented. The results will be useful in improving the power control-based subcriticality monitoring method in coupled systems of the "pulsed neutron source-subcritical fuel assembly" type.

Keywords

Acknowledgement

This research was supported by the Russian Science Foundation under RSF grant No. 23-29-00131 (https://rscf.ru/en/project/23-29-00131/). The authors are also grateful to the center of TPU's "Physical and chemical methods of analysis". The authors are very grateful to the peer reviewers, whose comments allowed to improve the quality of the paper significantly.

References

  1. MYRRHA. [online]. The Belgian nuclear center SCK-CEN provided information on a course of construction the new isotope MYRRHA reactor https://www.sckcen.be/en/our-scientific-projects/myrrha(accessed July 27, 2022). 
  2. H.A. Abderrahim, P. Kupschus, E. Malambu, P. Benoit, K. Van Tichelen, B. Arien, F. Vermeersch, P. D'hondt, Y. Jongen, S. Ternier, D. Vandeplassche, MYRRHA: a multipurpose accelerator driven system for research & development, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 463 (3) (2001) 487-494.  https://doi.org/10.1016/S0168-9002(01)00164-4
  3. T. Donne, W. Morris, X. Litaudon, C. Hidalgo, D. McDonald, H. Zohm, P. Helander, European Research Roadmap to the Realization of Fusion Energy, 2018. https://www.euro-fusion.org/fileadmin/user_upload/EUROfusion/Documents/TopLevelRoadmap.pdf. (Accessed 8 August 2022). 
  4. Z. Chen, P.A. Bagryansky, Q. Zeng, J. Zou, K. Zhang, Z. Wang, J. Jia, S. Zhang, L. Dong, X. Zha, Summary of the 3rd international workshop on gas-dynamic trap based fusion neutron source (GDT-FNS), Nucl. Fusion 62 (2) (2022), 067001. 
  5. S. Entler, J.M. Hor acek, T. Dlouhy, V. Dostal, Approximation of the economy of fusion energy, Energy 152 (2018) 489-497.  https://doi.org/10.1016/j.energy.2018.03.130
  6. S.S. Ananyev, B.V. Ivanov, B.V. Kuteev, Analysis of promising technologies of DEMO-FNS fuel cycle, Fusion Eng. Des. 161 (2020), 111940. 
  7. A.V. Arzhannikov, V.M. Shmakov, D.G. Modestov, S.V. Bedenko, V.V. Prikhodko, I.O. Lutsik, I.V. Shamanin, Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap, Nucl. Eng. Technol. 52 (11) (2020) 2460-2470.  https://doi.org/10.1016/j.net.2020.05.003
  8. A. Arzhannikov, S. Bedenko, V. Shmakov, V. Knyshev, I. Lutsik, V. Prikhodko, I. Shamanin, Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons, Nucl. Sci. Tech. 30 (12) (2019) 1-11.  https://doi.org/10.1007/s41365-018-0540-8
  9. S.V. Bedenko, A.V. Arzhannikov, I.O. Lutsik, V.V. Prikhodko, V.M. Shmakov, D.G. Modestov, A.G. Karengin, I.V. Shamanin, Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by DT fusion neutron flux, Nucl. Eng. Technol. 53 (6) (2021) 1736-1746.  https://doi.org/10.1016/j.net.2020.11.026
  10. A.V. Krasilnikov, S. Konovalov, E.N. Bondarchuk, I.V. Mazul, I.Yu Rodin, A.B. Mineev, E.G. Kuzmin, A.A. Kavin, D.A. Karpov, V.M. Leonov, R.R. Khairutdinov, A.S. Kukushkin, D.V. Portnov, A.A. Ivanov, YuI. Belchenko, G.G. Denisov, Tokamak s reaktornymi tekhnologiyami (TRT): kontseptsiya, missii, osnovnyye osobennosti i ozhidayemyye kharakteristiki, Fiz. Plazmy (Moscow) 47 (11) (2021) 970-985, https://doi.org/10.31857/S0367292121110196 (In Russian). 
  11. W. Yang, Q. Zeng, C. Chen, Z. Chen, J. Song, Z. Wang, J. Yu, D.V. Yakovlev, V.V. Prikhodko, Shielding design and neutronics calculation of the GDT based fusion neutron source ALIANCE, Fusion Eng. Des. 164 (2021), 112221. 
  12. R.W. Moir, N.N. Martovetsky, A.W. Molvik, D. Ryutov, T.C. Simonen, Mirror-based hybrids of recent design, AIP Conf. Proc. 1442 (No. 1) (2012, June) 43-54 (American Institute of Physics). 
  13. A.V. Arzhannikov, A.V. Anikeev, A.D. Beklemishev, A.A. Ivanov, I.V. Shamanin, A.N. Dyachenko, O.Y. Dolmatov, Subcritical assembly with thermonuclear neutron source as device for studies of neutron-physical characteristics of thorium fuel. In AIP Conference Proceedings, AIP Publ. LLC 1771 (No. 1) (2016, October), 090004. 
  14. Y.E. Titarenko, S.S. Ananyev, V.F. Batyaev, et al., Radiation and nuclear Physics aspects of the use of the thorium fuel cycle in a hybrid fusion facility, Fusion Sci. Technol. 79 (2) (2023) 117-134.  https://doi.org/10.1080/15361055.2022.2121525
  15. W. Gudowski, V. Arzhanov, C. Broeders, I. Broeders, J. Cetnar, R. Cummings, M. Ericsson, B. Fogelberg, C. Gaudard, A. Koning, P. Landeyro, Review of the European project-impact of Accelerator-Based Technologies on nuclear fission safety (IABAT), Prog. Nucl. Energy 38 (1-2) (2001) 135-151.  https://doi.org/10.1016/S0149-1970(00)00099-8
  16. J. Knaster, F. Arbeiter, P. Cara, S. Chel, A. Facco, R. Heidinger, A. Ibarra, A. Kasugai, H. Kondo, G. Micciche, K. Ochiai, IFMIF, the European-Japanese efforts under the Broader Approach agreement towards a Li (d, xn) neutron source: current status and future options, Nucl. Mater. Energy 9 (2016) 46-54.  https://doi.org/10.1016/j.nme.2016.04.012
  17. V.V. Prikhodko, A.V. Arzhannikov, Simulations of fusion neutron source based on the axially symmetric mirror trap for the thorium hybrid reactor. In Journal of Physics: conference Series, IOP Publ. 1647 (No. 1) (2020, October), 012004. 
  18. I.V. Shamanin, S.V. Bedenko, Y.B. Chertkov, I.M. Gubaydulin, Gas-cooled thorium reactor with fuel block of the Unified design, Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika 3 (2015) 124-134, https://doi.org/10.26583/npe.2015.3.13 (In Russian). 
  19. S.V. Bedenko, N. Ghal-Eh, I.O. Lutsik, I.V. Shamanin, A fuel for generation IV nuclear energy system: isotopic composition and radiation characteristics, Appl. Radiat. Isot. 147 (2019) 189-196.  https://doi.org/10.1016/j.apradiso.2019.03.005
  20. KSTAR (Korea Superconducting Tokamak Advanced Research). https://www.sciencealert.com/south-korea-s-artificial-sun-just465set-a-new-worldrecord-for-high-temperature-plasma. (Accessed 29 November 2021) [online]. South Korea's 'Artificial Sun' Just Set a New World Record for High Temperature Plasma. 
  21. EAST (Experimental Advanced Superconducting Tokamak). https://www.scmp.com/news/china/science/article/3161780/chinas-artificial-sun-hits-new-high-clean-energy-boost. (Accessed 3 August 2022) [online]. China's 'artificial sun' hits new high in clean energy boost. 
  22. Y.Z. Kandiev, E.A. Kashaeva, K.E. Khatuntsev, E.S. Kuropatenko, L.V. Lobanova, G.N. Lukin, A.A. Malakhov, G.N. Malyshkin, D.G. Modestov, R.F. Mukhamadiev, V.G. Orlov, PRIZMA status, Ann. Nucl. Energy 82 (2015) 116-120.  https://doi.org/10.1016/j.anucene.2014.09.006
  23. SERPENT [online]. Serpent 2 Monte Carlo Code version 2.2.0 < https://www.oecd-nea.org/tools/abstract/detail/nea-1923/> (Accessed July 17, 2022). 
  24. FloEFD [online]. Siemens Simcenter FloEFD 2021.2.0 v5391 x64 + For NX & Others Free https://tech-story.net/siemens-simcenter-floefd-2021-2-0-v5391-x64-for>. (Accessed June 17, 2022). 
  25. J. Gehin, M. Jessee, M.L. Williams, D. Lee, S. Goluoglu, G. Ilas, D. Ilas, S. Bowman, High Temperature Gas-Cooled Reactors, first ed., Elsevier, eBook, 2021 https://doi.org/10.1016/C2018-0-05383-9. (Accessed 27 July 2022). 
  26. N. Nojiri, S. Shimakawa, N. Fujimoto, M. Goto, Characteristic test of initial HTTR core, Nucl. Eng. Des. 233 (2004) 283-290.  https://doi.org/10.1016/j.nucengdes.2004.08.015
  27. J. Bess, N. Fujimoto, Benchmark evaluation of start-up and zero-power measurements at the high-temperature engineering test reactor, Nucl. Sci. Eng. 178 (2014) 414-427.  https://doi.org/10.13182/NSE14-14
  28. IAEA [online]. International atomic energy agency, Advances in High Temperature Gas Cooled Reactor Fuel Technology, IAEA TECDOC (CD-ROM) No. 1674, IAEA, Vienna, 2013, https://www.iaea.org/publications/10451/advances-in-high-temperature-gas-cooled-reactor-fuel-technology. June 27, 2022). 
  29. G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects, Energy Pol. 61 (2013) 1503-1520.  https://doi.org/10.1016/j.enpol.2013.06.101
  30. IAEA [online], International atomic energy agency, IAEA Safeguards Glossary, IAEA, Vienna, Int. Nucl. Verif. Ser. vol. 3 (2003), https://www.iaea.org/publications/6663/iaea-safeguards-glossary. (Accessed 27 July 2022). 
  31. H.J. Rutten, K.A. Haas, Research on the incineration of plutonium in a modular HTR using thorium-based fuel, Nucl. Eng. Des. 195 (3) (2000) 353-360.  https://doi.org/10.1016/S0029-5493(99)00222-8
  32. IAEA [online], Thorium Fuel Cycle - Potential Benefits and Challenges, IAEA-TECDOC-1450 IAEA, Vienna, 2005. https://www.iaea.org/publications/7192/thorium-fuel-cycle-potential-benefits-and-challenges. (Accessed 27 July 2022). 
  33. NEA. https://oecd-nea.org/dbdata/data/nds_eval_libs.htm. (Accessed 27 July 2022) [online]. Nuclear Energy Agency, Evaluated Nuclear Data Library Descriptions. 
  34. S.V. Bedenko, A.G. Karengin, N. Ghal-Eh, N.I. Alekseev, V.V. Knyshev, I.V. Shamanin, Thermo-physical properties of dispersion nuclear fuel for a new-generation reactors: a computational approach, in: AIP Conference Proceedings vol. 2101, AIP Publishing LLC, 2019, October, 020002. No. 1. 
  35. A. Shaimerdenov, S. Gizatulin, D. Dyussambayev, S. Askerbekov, S. Ueta, J. Aihara, T. Shibata, N. Sakaba, Study on the effect of long-term high temperature irradiation on TRISO fuel, Nucl. Eng. Technol. 54 (8) (2022) 2792-2800. https://doi.org/10.1016/j.net.2022.02.026