• Title/Summary/Keyword: Subcritical Crack Growth

Search Result 14, Processing Time 0.028 seconds

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

Adhesion Reliability Enhancement of Silicon/Epoxy/Polyimide Interfaces for Flexible Electronics

  • Kim, Sanwi;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • Adhesion and mechanical reliability of silicon/epoxy/polyimide interfaces are critical issues for flexible electronics. Bonds between these interfaces are mainly hydrogen bonds, so their adhesion is weaker than cohesive fracture toughness and vulnerable to moisture. In order to enhance adhesion and suppress moisture-assisted debonding, UV/Ozone treatment and innovative sol-gel derived hybrid layers were applied to silicon/epoxy/polyimide interfaces. The fracture energy and subcritical crack growth rate were measured by using a double cantilever beam (DCB) fracture mechanics test. Results showed that UV/Ozone treatment increased the adhesion, but was not effective for improving reliability against humidity. However, by applying sol-gel derived hybrid layers, adhesion increase as well as suppresion of moisture-assisted cracking were achieved.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.