• Title/Summary/Keyword: Subcooled Boiling

Search Result 84, Processing Time 0.03 seconds

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

A Study on the Heat Transfer of Carbon Steels in Quenching (탄소강의 담금질 열전달에 관한 연구)

  • 김경근;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The very rapid cooling problem from $820^{\circ}$C to $20^{\circ}$C on the surface of the steel by thermal conduction including the latent heat of phase transformation of steel and by transient boiling heat transfer of water are considered to principal problem in quenching. The transient boiling process of water at the surface of specimen during the quenching process were experimentally analyzed. Then the heat flux was numerically calculated by the numerical method of inverse heat condition problem. In this report, the simulation program to calculate the cooling curves for large rolls was made using the subcooled transient boiling curve as a boundary condition. By this simulation program, the cooling curves of rolls from D=50mm to D=200mm were calculated and the effects of agitation of circulation of water also investigated.

  • PDF

FLOW BOILING HEAT TRANSFER FROM PLAIN AND MICROPOROUS COATED SURFACES IN SUBCOOLED FC-72

  • Rainey, K.N.;Li, G.;You, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.181-188
    • /
    • 2001
  • The present research is an experimental study of subcooled flow boiling behavior using flat, microporousenhanced square heater surfaces in pure FC-72. Two $1-cm^{2}$ copper surfaces, one highly polished (plain) and one microporous coated, were flush-mounted into a 12.7 mm square, horizontal flow channel. Testing was performed for fluid velocities ranging from 0.5 to 4 m/s (Reynolds numbers from 18,700 to 174,500) and pure subcooling levels from 4 to 20 K. Results showed both surfaces' nucleate flow boiling curves collapsed to one line showing insensitivity to fluid velocity and subcooling. The log-log slope of the microporous surface nucleate boiling curves was lower than the plain surface due to the conductive thermal resistance of the microporous coating layer. Both, increased fluid velocity and subcooling, increase the CHF values for both surfaces, however, the already enhanced boiling characteristics of the microporous coating appear dominant and require higher fluid velocities to provide additional enhancement of CHF to the microporous surface.

  • PDF

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

Prediction of Very High Critical Heat Flux for Subcooled Flow Boiling in a Vertical Round Tube (수직 원형관에서 서브쿨비등시 매우 높은 임계열유속의 예측)

  • Kwon, Young-Min;Hahn, Do-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.288-293
    • /
    • 2001
  • A critical heat flux (CHF) prediction method using an artificial neural network (ANN) was evaluated for application to the high-heat-flux (HHF) subcooled flow boiling. The developed ANN predictions were compared with the experimental database consisting of a total of 3069 CHF data points. Also, the prediction performance by the ANN was compared with those by mechanistic models and a look up table technique. The parameter ranges of the experimental data are: $0.33{\leq}D{\leq}37.5mm$, $0.002{\leq}L{\leq}4m$, $0.37{\leq}G{\leq}134Mg/m^2s$, $0.1{\leq}P{\leq}20MPa$, $50\leq{\Delta}h_{sub,in}\leq1660kJ/kg$, and $1.1{\leq}q_{CHF}\leq276MW/m^2$. $276MW/m^2$. It was found that 91.5% of the total data points were predicted within $a{\pm}20%$ error band, which showed the best prediction performance among the existing CHF prediction methods considered.

  • PDF

The Prediction of Void Fraction in the Subcooled Boiling Region (서브쿨드 비등 영역에서의 기포계수 계산에 관한 연구)

  • Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.195-201
    • /
    • 1984
  • A state-of-the-art mechanistic model has been developed to accurately predict the void fraction in the subcooled boiling region having axial nonuniform heat flux. In this study, the void-dependent drift-flux parameters of the Lahey/Ohkawa model were introduced and the mass flux-dependent condensation coefficient were determined by fitting with the experimental data. This model was tested against several experimental data sets to verify its accuracy. Finally the comparison between the predicted void fraction profiles with this model and the profile-fit model for the hot assembly of Kori-Unit 1, Cycle 1 has been performed. It is conclusive that the results show the good agreement between the measured and predicted void fractions, and the profile-fit model has been found to underestimate the void fraction in the subcooled boiling region.

  • PDF

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

A Study on Boiling Heat Transfer in a Impinging Subcooled Water Jet System (충돌과냉수분류(衝突過冷水噴流)의 비등열전달(沸騰熱傳達)에 관한 연구(硏究))

  • Lee, G.J.;Lee, J.S.;Ohm, K.C.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 1993
  • This paper describes the boiling heat transfer phenomena to be divided into three regions, nonboiling, nucleate boiling and burn-out in the impinging subcooled water jet system. In the nonboiling region, Nusselt number is a function of Prandtl number, Reynolds number and ${\Delta}T_{sub}/T_{ast}$ In the nucleate boiling region, the heat flux increases with increment of the nozzle exit velocity. But the degree of liquid subcooling does not affect the shape of the nucleate boilng curve. The dimensionless correlations can be expressed in the form of $q{\ell}/K_f{\Delta}T_{ast}=C(Bo{\cdot}C_p{\cdot}{\Delta}T_{sat}/Vo^2)^m{\cdot}(Re/We)^n$. The burn-out heat flux increases linearly with increment of the nozzle exit velocity, but independs of degree of subcooling and the supplementary water height.

  • PDF