• Title/Summary/Keyword: Sub-structure synthesis method

Search Result 204, Processing Time 0.024 seconds

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Easy and Fast Synthesis of Pd-MWCNT/TiO2 by the Sol-Gel Method and its Recyclic Photodegradation of Rhodamine B

  • Ye, Shu;Ullah, Kefayat;Zhu, Lei;Meng, Ze-Da;Sun, Qian;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.251-256
    • /
    • 2013
  • Multiwalled carbon nanotubes (MWCNTs) modified with Pd and $TiO_2$ composite catalysts were synthesized by the sol-gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic recycle degradation experiments were carried out under both UV and visible light irradiation in the presence of MWCNT/$TiO_2$ and Pd-MWCNT/$TiO_2$ composites. As expected, the nanosized Pd-MWCNT/$TiO_2$ photocatalysts had enhanced activity over the non Pd treated MWCNT/$TiO_2$ material in the degradation of a rhodamine B (Rh.B) solution. An increase in photocatalytic activity was observed and attributed to an increase in the photo-absorption effect by MWCNTs and the cooperative effect of Pd and $TiO_2$ nanoparticles. According to the recycled results, the as-prepared Pd-MWCNT/$TiO_2$ sample had a good effect on it.

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes (스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교)

  • Lee, Ki-Soo;Bang, Hyun-Joo;Sun, Yang-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2007
  • In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering (반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성)

  • Song, In-Chang;Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-jin;Kim, Do-jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.

A Comparative Study on Synthesis and Characteristics of LiDAR-detectable Black Hollow-Structured Materials Using Various Reduction Methods (다양한 환원법을 활용한 라이다 인지형 검은색 중공구조 물질의 제조 및 특성 비교 연구)

  • Dahee Kang;Minki Sa;Jiwon Kim;Suk Jekal;Jisu Lim;Gyu-Sik Park;Yoonho Ra;Shin Hyuk Kim
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.56-62
    • /
    • 2024
  • In this study, LiDAR-detectable black hollow-structured materials are synthesized using different reducing agents to evaluate their applicability to LiDAR sensor. Initially, white SiO2/TiO2 core/shell (WST) materials are fabricated via a sol-gel method, followed by a reduction using ascorbic acid (AA) and sodium borohydride (SB). After the reduction, subsequent etching of the SiO2 core leads to the formation of two different black hollow-structured materials (AA-BHT and SB-BHT). The lightness (L*) and near-infrared (NIR) reflectance (R%) of AA-BHT are measured as ca. 19.1 and 34.5 R%, and SB-BHT shows values of ca. 11.5 and 31.8 R%, respectively. While AA-BHT exhibits higher NIR reflectance compared to SB-BHT, it displays slightly lower blackness. Compared with core/shell structured materials, improved NIR reflectance of both AA-BHT and SB-BHT is attributed to the morphology of hollow- structured materials, which increase light reflection at the interface between air and black TiO2 according to the Fresnel's reflection principle. Consequently, both AA-BHT and SB-BHT are effectively detected by the commercially available LiDAR sensors, validating their suitability as black materials for autonomous vehicle and environment.

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method (전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성)

  • Lee, Seung-Byung;Cho, Seung-Hyun;Park, Sun-Il;Lee, Wan-Jin;Lee, Yun-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • $LiFePO_4$ material was synthesized by electrospinning method to obtain optimal particle size($50{\sim}100\;nm$) without carbon coating or ball milling. This material showed an orthorthombic structure with Pnma space group without any impurities, such as FeP or $Fe_2P$, in the XRD pattern. The particle morphology and particle shape were observed by SEM analysis. Li/$LiFePO_4$ cell showed a high initial discharge capacity of 135 mAh/g, at current density of $0.1\;mA/cm^2$ with a cut-off voltage of 2.8 to 4.0V. This cell exhibited a perfect cycle performance over 99.9% cycle retention rate up to 50 cycles.

Synthesis and Emission Properties of Dy3+-doped BaMoO4 Phosphors (Dy3+ 이온이 도핑된 BaMoO4 형광체의 합성과 발광 특성)

  • Cho, Shinho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • $Dy^{3+}$-doped $BaMoO_4$ phosphor powders were synthesized by using the solid-state reaction method and their crystalline structure, morphology and size of particles, excitation and emission properties were investigated. The structure of all the phosphor powders, irrespective of the mol ratio of $Dy^{3+}$ ions, was found to be the tetragonal system with the main diffraction peak at (112) plane. The grain particles agglomerate together to form larger clusters with increasing the mol ratio of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 293 nm and weak multiline peaked in the range of 230~320 nm, which were due to the transitions of $Dy^{3+}$ ions. The emission of the phosphors peaking at 666 and 754 nm, originating from the transitions of $^4F_{9/2}{\rightarrow}^6H_{11/2}$ and $^4F_{9/2}{\rightarrow}^6H_{9/2}$ of $Dy^{3+}$ ions, was rather weak, while the intensity of blue and yellow emission peaking at 486 nm and 577 nm due to the transitions of $^4F_{9/2}{\rightarrow}^6H_{15/2}$ and $^4F_{9/2}{\rightarrow}^6H_{13/2}$ of $Dy^{3+}$ ions was significantly stronger. The experimental results suggest that the white-light emission can be realized by controlling the yellow-to-blue intensity ratio of $Dy^{3+}$ emission.

Mechanism for Ni/YSZ Nano-composite Anode from Spherical Core-shell Formation

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gu, Ja-Bin;Hwang, Hae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We studied a method of manufacturing an anode to restrict contraction in reducing NiO/YSZ by uniformly mixing. In order to mix Ni and YSZ, a sub-micron Ni core surface was coated at high-speed by a mixture of nano-sized YSZ and a spherical core-shell was subsequently formed. The micron-sized core-shell anode powder was then heat treated at $400{\sim}1,450^{\circ}C$ in an air atmosphere and Ni was extruded and synthesized in nano-size. Subsequently, when the nano-sized mixture of the anode was heat treated and maintained at a temperature of $1,450^{\circ}C$, the anode was manufactured, where Ni and YSZ were uniformly distributed with the nano-structure. According to the nano-sized anode powder synthesis process, Ni particles were oxidized at $400{\sim}500^{\circ}C$ and became spherical by surface tension. In the case of the spherical core Ni powder, the heat treatment temperature rose to $1,250^{\circ}C$ and then a gap between the internal and external pressures occurred due to thermal and tensile stresses. A crack subsequently appeared on the surface, and the heat treatment temperature was increased continuously to increase the pressure gap and then the core Ni extruded as a nano-sized powder, Ni and YSZ uniformly distributed. It was found that the anode of 50~200 nm with a consistent structure obtained in this study has electric conductivity that is approximately 3 times larger than that of a commercial anode.

  • PDF

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.