• 제목/요약/키워드: Sub-material of cement

검색결과 122건 처리시간 0.036초

An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete

  • Murali, Kallempudi;Meena, T.
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.499-505
    • /
    • 2021
  • Geopolymer binders fascinate the attention of researchers as a replacement to cement binder in conventional concrete. One-ton production of cement releases one ton of carbon-dioxide in the atmosphere. In the replacement of cement by geopolymer material, there are two advantages: one is the reduction of CO2 in the atmosphere, second is the utilization of Fly ash and Ground granulated blast furnace slag (GGBFS) are by-products from coal and steel industries. This paper focuses on the mechanical properties of steel fiber reinforced geopolymer concrete. The framework considered in this research work is geopolymer source (Fly ash, GGBFS and crimped steel fibre) and alkaline activator which consists of NaOH and Na2SiO3 of molarity 8M. Here the Na2SiO3 / NaOH ratio was taken as 2.5. The variables considered in this experimental work include Binder content (360,420 and 450 kg/m3), the proportion of Fly ash and GGBS (70-30, 60-40 and 50-50) for three different grades of Geopolymer concrete (GPC) GPC 20, GPC 40 and GPC 60. The percentage of crimped steel fibres was varied as 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Generally, the inclusion of steel fibres increases the flexural and split tensile strength of Geopolymer concrete. The optimum dosage of steel fibres was found to be 0.4% (by volume fraction).

시멘트 산업에서 배출한 CO2로부터 메탄올 생산에 대한 공정 시뮬레이션 연구 (Simulation Study on the Production of Methanol from CO2 Emissions in the Cement Industry)

  • 한단비;백영순;임병일
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.249-256
    • /
    • 2024
  • The cement industry emits a large amount of greenhouse gases compared to other industries, with about 60% of CO2 emissions from the decarbonation of limestone and about 40% from the combustion of fossil fuels. Therefore, the cement industry needs to reduce greenhouse gases through carbon capture, utilization, and storage technology. Capturing CO2 and synthesizing it into methanol is feasible and also useful as raw material for the chemical industry and as marine fuel. In this study, We aimed to produce methanol from syngas produced by capturing CO2 emissions. Process simulations were performed under various conditions such as syngas ratio, temperature, and pressure for the production of synthesis gas and methanol, and the results showed that the optimal amount of methanol production at a synthesis gas ratio of 2.03.

친환경 SCW공법용 지반고화재 경화체의 내구특성 (Durable Characteristic of Ground Solidification Material's Body of Hardening used Eco-friendly SCW Method)

  • 조정규;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.118-119
    • /
    • 2017
  • In the S.C.W (soil cement wall) grouting solution, Cement grout ratio of 1 part Portland cement and 1part water is being used. However, Co2 and harmful heavy metals such as cr6+ are discharged in the process, causing a serious environmental issue. The purpose of the present study is therefore to substitute cement grout to inorganic binder and identify durability properties of ground solidification materials.

  • PDF

카테콜 작용기를 함유한 키토산 고분자 혼입율에 따른 시멘트 모르타르의 특성 변화 (Synthesis of catechol-conjugated chitosan and its application as ana dditive for cement mortar)

  • 최회영;최세진;고혜민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.255-256
    • /
    • 2022
  • We synthesized catechol-conjugated chitosan (CCC) to study its usefulness as a construction material additive in cement mortar. The degree of catechol conju-gation (DOCcat) of the synthesized CCC was determined to be approximately14% by UV-vis and 1H NMR spectroscopy. Furthermore, the hydroxyl and amine groups in CCC could play a crucial role in hydrogen bonding, metal coordination, and cross-linking processes via interaction with adducts from cement mortar. In this study, we observedanimprovement in the compressive strength and absorption rate, suggesting that CCC is a promising candidateforhigh-performance cement mortar.

  • PDF

Living Building Material의 광합성 작용을 통한 CO2 흡수 능력 평가 (Photo-autotrophic Behavior of Engineered Living Building Materials)

  • 장인동;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2022
  • Unlike conventional building materials, the living building material (LBM) cube is composed of sand, gelatin, and cyanobacteria without cement. The surface of the LBM cube absorbs CO2 from the atmosphere by photosynthesis and is deposited in the form of CaCO3. In addition, the crystals generated in this process strengthened the gelatin-sand structure to enhance the compressive strength.

  • PDF

γ-C2S 혼입 시멘트 모르타르의 공극구조 및 Fractal특성 (Pore Structure and Fractal Characters of Cement Mortar Containing γ-C2S)

  • 진정심;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.24-25
    • /
    • 2017
  • Gamma-C2S (γ-C2S) is a substance that is difficult to react with water under normal temperature but can absorb a large amount of CO2 in the air. The addition of γ-C2S to cementitious materials through the curing of CO2 can improve the pore structure and improve the durability of the material. In this study, three kind of Ca-bearing materials : CaO, Ca(OH)2, CaCO3, were calcined 2.5h at 1450℃ to synthesize γ-C2S after mixing with SiO2 respectively. Among them, Ca(OH)2 mixed with SiO2 after calcining shows highest content. Synthesized γ-C2S was added to the cement mortar, after water curing for 1 month, accelerated carbonation test was experimented. After 28d accelerated carbonation test, pore structure will be detectived by MIP. Based on the MIP result, following the calculation method of Fractal theory, the pore structure will be quantitative described.

  • PDF

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

고로슬래그가 혼입된 갯벌 모르타르의 역학적 특성 (The Mechanical properties of Mud Flat mortar mixed with Blast furnace slag)

  • 강윤영;김희두;강대규;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2015
  • Depending on the industrialization, construction market has grown buildings are based on concrete will continue to increase. But the problems of environmental pollution come to the fore with the indiscriminate use of concrete and rapid development. In addition, carbon dioxide(CO2) in the process of producing cement being emitted a large amount of has been caused a serious problem of environmental pollution. This trend is being actively conducted research to reduce the use of cement. In this study, eco-friendly materials, such as flats, Blast-furnace slag by mix and cement review the mechanical characteristics of the mudflats eco-friendly cement mortar to reduce the usability of the review were seen as a green building material.

  • PDF

발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구 (Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment)

  • 윤성준;정현이;박병노;김용운;김혜수;박재봉;노열
    • 자원환경지질
    • /
    • 제52권6호
    • /
    • pp.627-635
    • /
    • 2019
  • 슬레이트는 석면을 이용한 대표적인 건축자재 중 하나로써 백석면(10~20%)과 시멘트 성분을 결합하여 만든 제품이다. 슬레이트에 포함되어 있는 석면은 인체에 유입되면 세포 손상이나 변형을 일으키고 체외로 잘 배출되지 않아 폐암, 석면폐, 악성중피종 및 흉막비후 등과 같은 질병을 일으키는 원인이 되는 것으로 입증되어 1977년 세계보건기구(WHO) 산하 국제암연구소(IARC)에서는 1군 발암물질로 지정하였다. 현재 이러한 슬레이트는 대부분 지정매립장에 매립하여 처리하고 있으나 매립용량이 한계에 다다르고 있고 매립한다고 하여도 추후 외부환경으로 노출될 수 있는 잠재적인 위험성이 있어 매립 처리방법 이외에 슬레이트에 포함된 석면을 무해화하여 안전하게 처리할 수 있는 방법이 필요하다. 따라서 이 연구에서는 발열반응 촉매제와 열처리를 이용하여 슬레이트에 함유된 석면 무해화 가능성을 확인하고자 하였다. 실험은 석면해체·제거 사업장에서 발생한 석면함유 슬레이트를 이용하였고 발열반응 촉매제는 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 수산화나트륨(NaOH), 규산소듐(Na2SiO3), 카올린[Al2Si2O5(OH)4)], 활석[Mg3Si4O10(OH)2]을 이용하여 총 6가지의 촉매제를 제조하였다. 6가지의 촉매제를 슬레이트에 각각 도포한 후 열중량-시차열분석(TG-DTA)을 실시하여 분석결과를 토대로 슬레이트 무해화를 위한 열처리 온도를 750℃로 결정하였다. 슬레이트에 6가지 촉매제를 각각 도포한 후 750℃에서 2시간 열처리하여 X-선 회절 분석(XRD), 주사전자현미경 분석(SEM-EDS), 투과전자현미경 분석(TEM-EDS)을 한 결과 슬레이트 내 백석면[chrysotile, Mg3Si2O5(OH5)]이 주상의 고토감람석(forsterite, Mg2SiO4)으로 상전이 됨을 확인하였다. 또한, 슬레이트 원시료와 발열반응 촉매제 도포 후 열처리한 시료에 물리적인 힘을 가하여 광물의 형상 변화를 비교 관찰한 결과, 슬레이트 내 백석면은 섬유형을 유지하였으나 촉매제 도포 및 열처리를 한 시료는 무정형 형태로 깨지는 것을 확인할 수 있었다. 따라서 발열반응 촉매제와 열처리를 통하여 낮은 온도에서 경제적으로 석면함유 슬레이트를 안전하게 처리할 수 있는 하나의 방안을 제시할 수 있을 것으로 사료된다.

가속 탄화 조건에서 γ-C2S 첨가가 모르타르 함유 GGBFS의 특성에 미치는 영향 (Effect of γ-C2S Addition on the Properties of GGBFS Containing Mortar in Accelerated Carbonation Curing)

  • 트란 득 탄;이한승;싱 지텐드라 쿠마
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2020
  • 𝛾-dicalcium silicate (𝛾-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of 𝛾-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. The compressive strength of 𝛾-C2S added GGBFS cement mortar is higher compared to without 𝛾-C2S in accelerated carbonation (AC) up to 14 days of curing but once the curing duration is increased, there is no significant improvement in compressive strength. This study suggests that 𝛾-C2S can capture the atmospheric CO2 (mostly generated from cement and metallurgy industries) and utilized in construction.

  • PDF