• Title/Summary/Keyword: Sub-channel

Search Result 922, Processing Time 0.025 seconds

Effect of Output-conductance on Current-gain Cut-off frequency in In0.8Ga0.2As High-Electron-mobility Transistors (In0.8Ga0.2As HEMT 소자에서 Output-conductance가 차단 주파수에 미치는 영향에 대한 연구)

  • Rho, Tae-Beom;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.324-327
    • /
    • 2020
  • The impact of output conductance (go) on the short-circuit current-gain cut-off frequency (fT) in In0.8Ga0.2As high-electron-mobility transistors (HEMTs) on an InP substrate was investigated. An attempted was made to extract the values of fT in a simplified small-signal model (SSM) of the HEMTs, derive an analytical formula for fT in terms of the extrinsic model parameters of the simplified SSM, which are related to the intrinsic model parameters of a general SSM, and verify its validity for devices with Lg from 260 to 25 nm. In long-channel devices, the effect of the intrinsic output conductance (goi) on fT was negligible. This was because, from the simplified SSM perspective, three model parameters, such as gm_ext, Cgs_ext and Cgd_ext, were weakly dependent on goi. However, in short-channel devices, goi was found to play a significant role in degrading fT as Lg was scaled down. The increase in goi in short-channel devices caused a considerable reduction in gm_ext and an overall increase in the total extrinsic gate capacitance, yielding a decrease in fT with goi. Finally, the results were used to infer how fT is influenced by goi in HEMTs, emphasizing that improving electrostatic integrity is also critical importance to benefit fully from scaling down Lg.

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-II: Performance Analysis (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-II: 성능분석)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.110-118
    • /
    • 2006
  • In part-I of the paper, two sub-channel structures, either contiguous or distributed, were considered. Modeling the SNR distribution over a sub-channel as Ricean in general, the statistical chracteristics were investigated. In this part of the paper, we develop a generalized two step channel/resource allocation algorithm, which incorporates the two statistical measurements, and analyze the spectral efficiency of OFDMA in terms of average frequency utilization for the two sub-channel structures. In OFDMA with distributed structure, the key design parameter would be the sub-channel bandwidth. To give an insight into the impact on this parameter, we show in the numerical results the frequency utilization as a function of sub-channel bandwidth normalized to coherence bandwidth. As confirmed by numerical results, for contiguous sub-channel structure, we obtain the nominal multiuser diversity gain when the sub-channel bandwidth is smaller than the coherence bandwidth and lose the gain as it is getting larger.

Hot and average fuel sub-channel thermal hydraulic study in a generation III+ IPWR based on neutronic simulation

  • Gholamalishahi, Ramin;Vanaie, Hamidreza;Heidari, Ebrahim;Gheisari, Rouhollah
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1769-1785
    • /
    • 2021
  • The Integral Pressurized Water Reactors (IPWRs) as the innovative advanced and generation-III + reactors are under study and developments in a lot of countries. This paper is aimed at the thermal hydraulic study of the hot and average fuel sub-channel in a Generation III + IPWR by loose external coupling to the neutronic simulation. The power produced in fuel pins is calculated by the neutronic simulation via MCNPX2.6 then fuel and coolant temperature changes along fuel sub-channels evaluated by computational fluid dynamic thermal hydraulic calculation through an iterative coupling. The relative power densities along the fuel pin in hot and average fuel sub-channel are calculated in sixteen equal divisions. The highest centerline temperature of the hottest and the average fuel pin are calculated as 633 K (359.85 ℃) and 596 K (322.85 ℃), respectively. The coolant enters the sub-channel with a temperature of 557.15 K (284 ℃) and leaves the hot sub-channel and the average sub-channel with a temperature of 596 K (322.85 ℃) and 579 K (305.85 ℃), respectively. It is shown that the spacer grids result in the enhancement of turbulence kinetic energy, convection heat transfer coefficient along the fuel sub-channels so that there is an increase in heat transfer coefficient about 40%. The local fuel pin temperature reduction in the place and downstream the space grids due to heat transfer coefficient enhancement is depicted via a graph through six iterations of neutronic and thermal hydraulic coupling calculations. Working in a low fuel temperature and keeping a significant gap below the melting point of fuel, make the IPWR as a safe type of generation -III + nuclear reactor.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

  • Juyeon Ko;Jinhyeong Kim;Jongyun Myeong;Misun Kwak;Insuk So
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2023
  • Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Fairness-insured Aggressive Sub-channel Allocation and Efficient Power Allocation Algorithms to Optimize the Capacity of an IEEE 802.16e OFDMA/TDD Cellular System

  • Ko, Sang-Jun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.385-398
    • /
    • 2009
  • This paper aims to find a suitable solution to joint allocation of sub-channel and transmit power for multiple users in an IEEE 802.16e OFDMA/TDD cellular system. We propose the FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm, which is a dynamic channel allocation algorithm that considers all of the users' channel state information conditionally in order to maximize throughput while taking into account fairness. A dynamic power allocation algorithm, i.e., an improved CHC algorithm, is also proposed in combination with the FASA algorithm. It collects the extra downlink transmit power and re-allocates it to other potential users. Simulation results show that the joint allocation scheme with the improved CHC power allocation algorithm provides an additional increase of sector throughput while simultaneously enhancing fairness. Four frames of time delay for CQI feedback and scheduling are considered. Furthermore, by addressing the difference between uplink and downlink scheduling in an IEEE 802.16e OFDMA TDD system, we can employ the uplink channel information directly via channel sounding, resulting in more accurate uplink dynamic resource allocation.

Sub-channel Allocation Based on Multi-level Priority in OFDMA Systems

  • Lee, JongChan;Lee, MoonHo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1876-1889
    • /
    • 2013
  • Packet-based mobile multimedia services for the Internet differ with respect to their resource requirements, performance objectives, and resource usage efficiencies. Nonetheless, each mobile terminal should support a variety of multimedia services, sometimes even simultaneously. This paper proposes a sub-channel allocation scheme based on multi-level priority for supporting mobile multimedia services in an Orthogonal Frequency Division Multiple Access (OFDMA) system. We attempt to optimize the system for satisfying the Quality of Service (QoS) requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, the proposed scheme considers the Signal-to-Interference-plus-Noise Ratio (SINR) of co-sub-channels in adjacent cells, the Signal-to-Noise Ratio (SNR) grade of each sub-channel in the local cell on a per-user basis, and the characteristics of the individual services before allocating sub-channels. We used a simulation to evaluate our scheme with the performance measure of the outage probabilities, delays, and throughput.

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells (고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계)

  • Choi, Kap-Seung;Bae, Byeong-Cheol;Park, Ki-Won;Kim, Hyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.

Hot-carrier effects in sub-micron scaled buried-channel P-MOSFETs (Sub-micron 규모의 메몰 채널(buried-channel)P-MOSFETs에서의 핫-캐리어 현상)

  • 정윤호;김종환;노병규;오환술;조용범
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.130-138
    • /
    • 1996
  • The size of a device needs to scale down to increase its integrity and speed. As the size of the device is reduced, the hot-carrier degradation that severely effects on device reliabilty is concerned. In this paper, sub-micron buried-channel P-MOSFETs were fabircated, and the hot-carrier effects were invetigated. Also the hot-carrier effect in the buired-channel P-MOSFETs and the surface-channel P-MOSFETs were compared with simulation programs using SUPREM-4 and MINIMOS-4. This paper showed that the electric characteristics of sub-micron P-MOSFET are different from those of N-MOSFET. Also it showed that the punchthrough voltage ( $V_{pt}$ ) was abruptly drop after applying the stress and became almost 0V when the channel lengths were shorter than 0.6.mu.m. The lower punchthrough voltage causes the device to operte poorly by the deterioration of cut-off characteries in the switching mode. We can conclude that the buried channel P-MOSFET for CMOS circuits has a limit of the channel length to be around 0.6.mu.m.

  • PDF

Benchmarking of the CUPID code to the ASSERT code in a CANDU channel

  • Eun Hyun Ryu;Joo Hwan Park;Yun Je Cho;Dong Hun Lee;Jong Yeob Jung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4338-4347
    • /
    • 2022
  • The CUPID code was developed and is continuously updated in KAERI. Verification and validation (V&V) is mainly done for light water reactors (LWRs). This paper describes a benchmarking of the detailed mesh level compared with sub-channel level for application to pressurized heavy water reactors (PHWRs), even though component scale comparison for the PHWR moderator system was done once before. We completed a sub-channel level comparison between the CUPID code and the ASSERT code and a CUPID code analysis. Because the ASSERT code has already been validated with numerous experiments, benchmarking with the ASSERT code will offer us more trust on the CUPID code. The target channel has high power and thus high pressure deformation. The high power channel tends to have a high possibility of critical heat flux (CHF), because a high void fraction and quality in channel exit region appear. In this research, after determining the reference grid and T/H model, we compared the sub-channel level results of the CUPID code with those of the ASSERT code.