• Title/Summary/Keyword: Sub spatial

Search Result 794, Processing Time 0.035 seconds

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

Analysis of Changes in Urban Spatial Structure for Balanced Urban Development (도시균형발전을 위한 도시공간구조 변화 진단)

  • KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.40-51
    • /
    • 2021
  • The purpose of this study is to diagnose urban spatial structures using spatial modeling techniques for balanced urban development as part of sustainable urban growth management. Since urban spatial structure is an interaction of various activities, it is necessary to interpret the analysis results in conjunction with the analysis of changes in spatial structural elements. In this study, population and transportation were approached for research purposes. Population data were applied to the Getis-Ord Gi* method, a spatial statistical technique, to analyze the concentration-decreasing region of the population. Traffic data analyzed the trend of centrality change by applying commuting traffic O-D data to Social Network Analysis techniques. The analysis showed that urban imbalance was growing, and the centrality of transportation was changing. The results of the analysis of spatial structure elements could be interpreted by linking the results of each factor to each neighborhood unit, predicting changes in urban spatial structure and suggesting directions for sustainable urban growth management.These results could also be used as a decision-making tool for various urban growth management policies introduced to cope with rapid urban development and uncontrollable development in many cities around the world.

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia (GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.879-890
    • /
    • 2011
  • The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

The Study on the Non-Uniformity of PECVD SiO2 Deposition by the Plasma Diagnostics (플라즈마 진단에 의한 PECVD SiO2 증착의 불균일성 원인 연구)

  • Ham, Yong-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • The cause of the thickness non-uniformity in the large area deposition of $SiO_2$ films by PECVD(Plasma Enhanced Chemical Vapor Deposition) was investigated by the plasma diagnostics. The spatial distribution of the plasma species in the chamber was obtained with DLP(Double Langmuir Probe) and the new-designed probe-type QMS(Quadrupole Mass Spectrometer). From the relationship between the spatial distribution of the plasma species and the depositing rate of the $SiO_2$ films, it was conformed that the non-uniform deposition of $SiO_2$ films was related with the spatial distribution of the oxygen radical density and electron temperature.

First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

  • Lee, Hanlim;Noh, Youngmin;Kwon, Soonchul;Hong, Hyunkee;Han, Kyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1191-1194
    • /
    • 2014
  • Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) in power plant emissions can be determined simultaneously in terms of SCD distribution. The $SO_2$ SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high $NO_2$ SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to $NO_2$ in NOx concentration, attributed to the NO oxidation by $O_3$. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

Exploration and Application of Regulatory PM10 Measurement Data for Developing Long-term Prediction Models in South Korea (PM10 장기노출 예측모형 개발을 위한 국가 대기오염측정자료의 탐색과 활용)

  • Yi, Seon-Ju;Kim, Ho;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.114-126
    • /
    • 2016
  • Many cohort studies have reported associations of individual-level long-term exposures to $PM_{10}$ and health outcomes. Individual exposures were often estimated by using exposure prediction models relying on $PM_{10}$ data measured at national regulatory monitoring sites. This study explored spatial and temporal characteristics of regulatory $PM_{10}$ measurement data in South Korea and suggested $PM_{10}$ concentration metrics as long-term exposures for assessing health effects in cohort studies. We obtained hourly $PM_{10}$ data from the National Institute of Environmental Research for 2001~2012 in South Korea. We investigated spatial distribution of monitoring sites using the density and proximity in each of the 16 metropolitan cities and provinces. The temporal characteristics of $PM_{10}$ measurement data were examined by annual/seasonal/diurnal patterns across urban background monitoring sites after excluding Asian dust days. For spatial characteristics of $PM_{10}$ measurement data, we computed coefficient of variation (CV) and coefficient of divergence (COD). Based on temporal and spatial investigation, we suggested preferred long-term metrics for cohort studies. In 2010, 294 urban background monitoring sites were located in South Korea with a site over an area of $415.0km^2$ and distant from another site by 31.0 km on average. Annual average $PM_{10}$ concentrations decreased by 19.8% from 2001 to 2012, and seasonal $PM_{10}$ patterns were consistent over study years with higher concentrations in spring and winter. Spatial variability was relatively small with 6~19% of CV and 21~46% of COD across 16 metropolitan cities and provinces in 2010. To maximize spatial coverage and reflect temporal and spatial distributions, our suggestion for $PM_{10}$ metrics representing long-term exposures was the average for one or multiple years after 2009. This study provides the knowledge of all available $PM_{10}$ data measured at national regulatory monitoring sites in South Korea and the insight of the plausible longterm exposure metric for cohort studies.