Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.2.89

The Study on the Non-Uniformity of PECVD SiO2 Deposition by the Plasma Diagnostics  

Ham, Yong-Hyun (Department of Control and Instrumentation Engineering, Korea University)
Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
Lee, Hyun-Woo (Division of Electronic, Computer, and Communication Engineering, Hanseo University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.2, 2011 , pp. 89-94 More about this Journal
Abstract
The cause of the thickness non-uniformity in the large area deposition of $SiO_2$ films by PECVD(Plasma Enhanced Chemical Vapor Deposition) was investigated by the plasma diagnostics. The spatial distribution of the plasma species in the chamber was obtained with DLP(Double Langmuir Probe) and the new-designed probe-type QMS(Quadrupole Mass Spectrometer). From the relationship between the spatial distribution of the plasma species and the depositing rate of the $SiO_2$ films, it was conformed that the non-uniform deposition of $SiO_2$ films was related with the spatial distribution of the oxygen radical density and electron temperature.
Keywords
PECVD; non-uniformity; deposition; $SiO_2$; QMS; DLP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Takechi, M. Nakata, T. Eguchi, S. Otsuki, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phy. 47, 7122 (2008).   DOI
2 J. Forster and W. Holber , J. vac. Technol. A 7, 899 (1989).   DOI
3 S. J. Jeong and S. G. Oh, New Physics (Korea Physical Society) 33, 56 (1993).
4 A. Schwabedissen, E. C. Benck, and J. R. Roberts, Phys. Rev. E 55, 3450 (1997).   DOI
5 Y. H. Ham, D. A. Shutov, K. H. Baek, L. M Do, K. Kim, C. W Lee and K. H. Kwon, Thin Solid Films 518, 6378 (2010).   DOI
6 Y. H. Ham, A. Efremov, S. J. Yun, J. K. Kim, N. K. Min and K. H. Kwon, Thin Solid Films 517, 4242 (2009).   DOI
7 S. H. Cho, Y. Y. Choi and D. J. Choi, J. Kor. Ceram. Soc. 47, 262 (2010).   DOI
8 M. J. Kushner, J. Appt. Phys. 74, 6538 (1993).   DOI
9 E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg and E. S. Aydil, J. Vac. Sci. Technol. A 16, 544 (1998).
10 L. Date, K. Radouane, B. Despax, M. Yousfi, H. Caquineau and A. Hennad, J. Phys. D: Appl. Phys. 32, 1478 (1999).   DOI
11 J. C. Tully, Phys. Rev. B 16, 4324 (1977).   DOI
12 M. Zaborowski and P. Grabiec, Microelectronic Engineering 85, 1257 (2008).   DOI
13 K. Radouane , L. Date, M. Yousfi , B. Despax and H. Caquineau, J. Phys. D: Appl. Phys. 33, 1332 (2000).   DOI
14 A. Lugstein, B. Basner, W. Brezna, M. Weil, S. Golka and E. Bertagnolli, Nuclear Instruments and Methods in Physics Research B 242, 93 (2006).   DOI
15 Y. Mo, Y. Wang and M. Bai, Physica E 41, 146 (2008).   DOI
16 H. Shirai, Y. Sakuma, K. Yoshino and H. Ueyama, Jpn. J. Appl. Phys. 39, L782 (2000).   DOI
17 S. Fu, J. Chen, X. Wu , N. Wang, M. Zhang and S. Hu, Plasma Science & Technology 8, 300 (2006).   DOI