• Title/Summary/Keyword: Styrene-maleic anhydride copolymer

Search Result 15, Processing Time 0.024 seconds

Effect of Compatibilizers on Mechanical Properties of Wood-Plastic Composites Using Styrene Polymers as Matrix Polymers (스티렌계 수지(樹脂)를 매트릭스로 사용한 목재 - 플라스틱 복합체(複合體)의 물성(物性)에 미치는 상용화제(相溶化劑)의 효과(效果))

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 1993
  • Composites of styrene polymers with woody fibers were prepared, and the effect of compatibilizers on their mechanical properties was evaluated. To improve the compatibility of wood fibers and the matrix polymers, styrene-maleic anhydride copolymer(SMA) and maleic anhydride-modified polymers were used as compatibilizers. As results, maleic anhydride-modified polystyrene and SMA were proved to improve the tensile strength of the molded composites, and also were evaluated as good compatibilizers for the wood fiber polystyrene composite. Cellulosic fiber (dissolving pulp) provided better reinforcement than lignocellulosic fiber(thermomechanical pulp). On the contrary in the case of the composite of wood fiber and acrylonitrile-butadiene styrene copolymer(ABS), SMA and maleic anhydride-modified acrylonitrile-butadiene-styrene copolymer(MABS) did not act as compatibilizers. However, MABS was evaluated as a good polymer matrix to make wood fiber reinforced composite. The tensile properties of the composites of wood fiber and MABS were superior than those of wood fiber-ABS composites.

  • PDF

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

Synthesis of Fluorinated Polymer Gate Dielectric with Improved Wetting Property and Its Application to Organic Field-Effect Transistors

  • Kim, Jae-Wook;Jung, Hee-Tae;Ha, Sun-Young;Yi, Mi-Hye;Park, Jae-Eun;Kim, Hyo-Joong;Choi, Young-Ill;Pyo, Seung-Moon
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.646-650
    • /
    • 2009
  • We report the fabrication of pentacene organic field-effect transistors (OFETs) using a fluorinated styrene-alt-maleic anhydride copolymer gate dielectric, which was prepared from styrene derivatives with a fluorinated side chain [$-CH_2-O-(CH_2)_2-(CF_2)_5CF_3$] and maleic anhydride through a solution polymerization technique. The fluorinated side chain was used to impart hydrophobicity to the surface of the gate dielectric and maleic anhydride was employed to improve its wetting properties. A field-effect mobility of 0.12 cm$^2$/Vs was obtained from the as-prepared top-contact pentacene FETs. Since various functional groups can be introduced into the copolymer due to the nature of maleic anhydride, its physical properties can be manipulated easily. Using this type of copolymer, the performance of organic FETs can be enhanced through optimization of the interfacial properties between the gate dielectric and organic semiconductor.

The Study of the Recycling Methode of Alloyed Recycling Plastics by Using the Compatibilizers (상용화제를 이용한 혼합 폐플라스틱의 재활용 방안)

  • Lee, Soo-Keun;Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.10 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • The aim of this study was to develop the recycling methode of alloyed recycling plastics. The compatibilizers have been used to improve the physical properties of recycling plastics. Eethylene propylene rubber(EPR), ethylene propylene diene monomer(EPDM), styrene ethylene butylene styrene block copolymer(SEBS), maleic anhydride modified styrene ethylene butylene styrene block copolymer(SEBS-MA) and styrene butadiene styrene block copolymer(SBS) were singled out as compatibilizers. In this study, the physical properties such as impact and tensile strength have improved above 20% by using the compatibilizers.

  • PDF

Effect of Compatibilizers on the Morphological, Mechanical and Rheological Properties of PP/PCL and TPO/PCL Blends (상용화제의 첨가에 따른 PP/PCL 블렌드와 TPO/PCL 블렌드의 기계적 물성 모폴로지 및 유변학적 물성)

  • Lee, Yun-Kyun;Kim, Min-Soo;Kim, Woo-Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.342-347
    • /
    • 2011
  • The effects of compatibilizers on the mechanical and rheological properties of PP/PCL and TPO/PCL blends have been studied. The thermoplastic polyolefin (TPO) consists of PP (80 wt%), EPDM (15 wt%) and Talc (5 wt%). Maleic anhydride grafted polypropylene (PP-g-MAH) and maleic anhydride grafted styrene-(ethylene-co-butene)-styrene copolymer (SEBS-g-MAH) were used as compatibilizers. In mechanical properties of PP/PCL and TPO/PCL blends, tensile strength was increased when PP-g-MAH was used as a compatibilizer, and impact strength was increased when SEBS-g-MAH was used as a compatibilizer. From the results of SEM morphology of PP/PCL blend, PCL droplet size was decreased by the addition of PP-g-MAH. From the results of rheological property, complex viscosity of the PP/PCL and TPO/PCL blends did not change appreciably when the compatibilizers were added. From the results of mechanical, morphological and rheological properties of the blends, PP-g-MAH acted as a compatibilizer to increase the tensile strength of the PP/PCL and TPO/PCL blends. While SEBS-g-MAH acted as a impact modifier to increase the impact strength of the PP/PCL and TPO/PCL blends.

Fluorescence Characteristics of Copolymer of Styrene-Maleic Acid in Tetrahydrofuran (스티렌-말레산 공중합체의 형광특성)

  • Yoo Jae Ryun;Lee Beom-Gyu;Kim Kang-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.100-106
    • /
    • 1992
  • The fluorescence characteristics of copolymers of styrene-maleic anhydride(PSMAn), styrene-maleic acid (PSMA), and PSMA complexed with $Eu^{3+}$ (PSMA-Eu) in tetrahydrofuran were studied. The excimer of PSMA and PSMA-Eu with 75% mole fraction of styrene appears to have larger binding energy than that with 50% or 67% styrene. The ratio of excimer to monomer intensities showed little change with the increase of styrene concentration up to $8.0{\times}10^{-3}M$, indicating the excimer formation is due to intramolecular process. Three existing mechanisms for intramolecular excimer formation are considered inadequate to explain the observed behavior. The quenching of excimer intensity by benzyl-acetate, mesitylene, and $CCl_4$ is interpreted in terms of the molar volume of quencher.

  • PDF

Flow and Strength Properties of Cement Mortar Mixed with High Range Water Reducer Containing Carboxylic Acid (카르본산계 고성능감수제를 첨가한 시멘트 모르타르의 유동 특성)

  • 김화중;강인규;권영도;김우성;황재현;김원기;박기청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.142-147
    • /
    • 1995
  • In this study, styrene-maleic anhydride copolymer (SMA) was synthesized from styrene and maleic anhydride and further reacted with sulfuric acid to obtain water-soluble SMA and the flow and strength tests of cement mortar mixed with copolymers were carried out to evaluate the capability of copolymers as high range water reducer for the concrete. It was found from flow experiment that the fluidity of cement mortar mixed with sulfonated SMA (SSMA) was larger than that miced with aminophenol-substituted SSMA (SmSMA). The decreasing rate of the flow of cement mortar mixed with SSMA and SmSMA was decreasing rate of the flow of cement mortar mixed with SSMA and SmSMA was significantly lower than that mixed with naphthalene condensate (NSC). The compressive strength of the hardened cement mortars containing 0.5% copolymers after 28 days curing was examined. The compressive strength of hardened cement mortar containing SSMA and SmSMA was increased up to 32% and 13%, respectively, when compared to the plain. As the results, the copolymers (SSMA and SmSMA) used in this study are greatly expected as a good high range water reducers for the concrete.

  • PDF

Properties of Poly(oxymethylene)/Modified Poly[styrene-b-(ethylene-1-butene)-b-styrene] Triblock Copolymer Blends (폴리(옥시메틸렌)/개질 폴리[스티렌-b-(에틸렌-1-부텐)-b-스티렌] 삼블록 공중합체 블렌드의 물성)

  • Jeon, Hyun-Uk;Kim, Seung-Woo;Kim, Gue-Hyun;Kim, Il;Ha, Chang-Sik
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 2004
  • Poly[styrene-b-(ethylene-1-butene)-b-styrene] triblock copolymer (SEBS) was functionalized with 0 to 3.0 phr maleic anhydride and the amount of dicumyl peroxide used as an initiator was varied from 0 to 0.3phr. The gel content of the modified SEBS was determined by xylene extraction and poly(oxymethylene) was blended with the modified SEBS. The impact, tensile, flexural strength and morphologies of the blends were investigated. The Izod impact strength of poly(oxymethylene) was improved through its blending with modified SEBS. However, the Izod impact strength of poly(oxymethylene)/modified SEBS blend decreased above 5% modified SEBS content. Regarding the effect of dicumyl peroxide content on the Izod impact strength, the blend had a maximum Izod impact strength when poly(oxymethylene) was blended with modified SEBS prepared with 0.1 phr dicumyl peroxide. It was also confirmed by SEM micrographs that the average particle size of modified SEBS in poly(oxymethylene)/modified SEBS blends was smaller than that of SEBS in poly(oxymethylene)/SEBS blends.

Study on Physical Properties of Maleic anhydride Grafted Polypropylene (PP)/Kenaf Fiber (KF) Composites (말레인산 무수물 그래프트 폴리프로필렌/케나프 섬유 복합체의 물성에 대한 연구)

  • Ku, Sun Gyo;Kim, Yu Shin;Hong, Young Eun;Kim, Dong Won;Kim, Ki Sung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.73-79
    • /
    • 2017
  • Maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) copolymers were prepared by changing MAH and styrene monomer (SM) content, using a twin screw extruder at $190^{\circ}C$. The grafting degree was measured by non-aqueous back titration method. The grafting degree of PP-g-MAH-SM copolymer was higher than that of PP-g-MAH at the same MAH content. PP-g-MAH-SM/kenaf fiber (KF) composites were also prepared by using a PP-g-MAH as a matrix at $200^{\circ}C$ and the KF content was fixed at 20 wt%. Based on the degradation temperature investigated by TGA, the thermal stability of PP-g-MAH-SM/KF composites was more enhanced than that of PP-g-MAH only. Mechanical properties of the composites were also improved when MAH and SM applied together. The adhesion degree between the copolymer and KF was confirmed by both SEM pictures of the fractured surface and contact angles.