• Title/Summary/Keyword: Styrene acrylate

Search Result 53, Processing Time 0.02 seconds

A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes (St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구)

  • Hyung, Won-Gil;Mun, Kyung-Ju;Song, Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.785-791
    • /
    • 2006
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars based on styrene and butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effects of monomer ratio on the typical properties of the polymer-modified mortars with styrene and butyl acrylate latexes. The polymer-modified mortars using the styrene and butyl acrylate latexes polymerized with various monomer ratios are prepared with different polymer-cement ratios, and tested for the particle size of polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer-modified mortars using styrene and butyl acrylate latexes with the mix proportions of synthesis having monomer ratios of 50:50 to 60:40 for the appropriate mix proportions can be recommended for practical applications. Their basic properties are greatly affected by the polymer-cement ratio rather than the monomer ratio, and are improved over un-modified mortar.

Optical and Mechanical Properties of Styrene/Butyl Acrylate/Methyl Methacrylate Terpolymers (스티렌/부틸아크릴레이트/메틸메타아크릴레이트 삼원 공중합체의 투명성 및 기계적 물성)

  • Jang, Sang Jin;Park, Hae Youn;Seo, Kwan Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.191-199
    • /
    • 2015
  • In order to improve the low impact resistance of polystyrene without harming its transparency the styrene monomer was copolymerized with transparent butyl acrylate (BA), and methylmethacrylate (MMA) to obtained a poly(styrene-co-butylacrylate) P(SM-co-BA) and a terpolymer copolymer P(SM-co-BA-co-MMA). The polymers were then cross-linked with the aid of a cross-linking agent dicumylperoxide (DCP), and their mechanical and optical properties were tested. It was found that the contents of monomers and DCP affect the mechanical, thermal, and optical properties of the polymers. An increase in BA contents in P(SM-co-BA) and P(SM-BA-MMA) improved the mechanical strength, but the optical properties remained the same with some exception for P(SM-co-BA). An increase in the DCP contents improved the mechanical but found losses in the optical properties.

Physical Properties and Durability of Polymer Modified Mortar Using Styrene and Butyl Acrylate Latexes (St/BA 폴리머 시멘트 모르타르의 물리적 특성 및 내구성)

  • Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • The effects of the monomer ratios on the typical properties of polymer modified mortars that contain styrene and butyl acrylate latexes was investigated. Basic data was also obtained that is necessary for the development of appropriate latexes for cement modifiers. Polymer modified mortars that contain styrene and butyl acrylate latexes polymerized with various monomer ratios were prepared for different polymer-cement ratios. They were then tested to obtain the particle size of the polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer modified mortars that have styrene and butyl acrylate latexes (with the mix proportions of synthesis having monomer ratios of between 40:60 to 60:40 for the appropriate mix proportions) could be recommended for practical applications. The basic properties of the polymer modified mortars were more affected by the polymer-cement ratio than by the monomer ratio, and were improved over unmodified mortar.

Poly(n-butyl acrylate-co-methyl methacrylate) and Poly(n-butyl acrylate-co-styrene)/Silicate Nanocomposites Prepared by Emulsion Polymerization

  • Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.425-430
    • /
    • 2003
  • Two types of poly(n-butyl acrylate) copolymer/silicate nanocomposites have been produced: poly(n-butyl acrylate-co-methyl methacrylate) [P(BA-co-MMA)]/silicate nanocomposites and poly(n-butyl acrylate-co-styrene) [P(BA-co-ST)]/silicate nanocomposites. The P(BA-co-MMA)/silicate nanocomposites shows the exfoliated structures but a P(BA-co-ST)/silicate nanocomposites have intercalated structures, because the BA/MMA comonomer has a higher polarity (e-value in Q-e scheme) than the BA/ST comonomer. The BA/MMA comonomer expanded the interlayer space of the silicate wider than did the BA/ST comonomer. The thermal degradation onset point of the P(BA-co-MMA)/silicate nanocomposites was 43$^{\circ}C$ higher than that of pure P(BA-co-MMA). P(BA-co-MMA)T5%, P(BA-co-MMA)T10%, and P(BA-co-MMA)T20% exhibit 134,302, and 195% increases, respectively, in their storage moduli at -20$^{\circ}C$ relative to the pure copolymer.

Properties of Polymer Cement Mortar Based on Styrene-Butyl Acrylate according to Emulsifier and Monomer Ratios (유화제 및 단량체비에 따른 스티렌-부틸 아크릴레이트계 폴리머 시멘트 모르타르의 특성)

  • Jo, Youngkug;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The purpose of this study is to clarify the effect of the emulsifier ratio on the properties of the polymer cement mortars based on styrene-butyl acrylate (S/BA) latexes, and to obtain necessary basic data to develop appropriate latexes for cement modifiers. The polymer dispersions for cement modifiers was synthesized using styrene and butyl acrylate. Polymer cement mortars based on S/BA latexes were prepared with various monomer and emulsifier ratios, and their water-cement ratio, air content, flexural and compressive strengths, water absorption and chloride ion penetration were tested. From the test results, the maximum flexural and compressive strengths of polymer cement mortars based on S/BA latexes were obtained at a bound styrene content of 60% and an emulsifier ratio of 6%. Also, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound styrene and emulsifier content. Accordingly, it is judged that S/BA latexes can be used place of the conventional polymer dispersions of cement modifier.

Bond Strength and Tensile Strength of Polymer-Modified Mortar Using Styrene and Butyl Acrylate (St/BA를 혼입한 폴리머 시멘트 모르타르의 부착강도 및 인장강도 특성)

  • You, Kipyo;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.820-826
    • /
    • 2014
  • The objective of this study is to find the relationship between the tensile strength of the polymer film and the bond strength and tensile strength of the polymer-modified mortar using styrene (St) and butyl acrylate (BA), and porosity. In the test results, the bond strength and tensile strength of the polymer-modified mortar increased with increases in the tensile strength of polymer film and the fine pore volume.

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Copolymerization and Characteristics of Styrene and Fluorine-Containing Acrylate (스티렌과 불소함유 아크릴레이트의 공중합 및 공중합체의 특성)

  • 김상신;이상원;허정림;허완수
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The free radical bulk copolymerizations of perfluoroalkylethyl acrylate(FA) containing perfluoro group ($CF_3(CF_2)_nCH_2CH_2$-; n=5, 7, 9, 11) with styrene were conducted at $60^{\circ}C$ using AIBN as an initiator. Reactivity ratios($r_1$, $r_2$) were determined from monomer feed compositions and the NMR spectroscopically measured copolymer compositions using Kelen-Tudos method. The structures of copolymers were characterized with FT-IR and $^1H-NMR$ analysis. Their thermal properties investigated with DSC and TGA were decreased with increasing the content of fluorinated acrylate in the copolymer. Their surface free energies were calculated with measuring contact angles of the copolymers and PMMA blends with a small amount of them.

Effect of Polymerization Condition on Atom Transfer Radical Copolymerization Behaviors of Styrene with Methyl Acrylate (스티렌과 메틸아크릴레이트의 원자 이동 라디칼 공중합에서 중합조건에 따른 중합 특성 연구)

  • Song, Seon-Ja;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.676-680
    • /
    • 2011
  • Investigated was the effect of the crucial polymerization conditions such as methyl acrylate(MA) mole fraction in feed, polymerization temperature and time on Atom Radical Transfer Polymerization(ATRP) behavior of styrene and methyl acrylate(MA). As MA mole fraction in feed increased, molecular weight(MW) of the resulting copolymer increased. At polymerization time of 3 hrs the composition of MA in the resulting copolymer was shown to have a linear relationship with the mole fraction of MA in feed. MW was increased and the composition of MA in copolymer was decreased as the polymerization time increased, showing the characteristics of ATRP. MW was also increased as polymerization temperature increased, and the composition of MA in copolymer was shown to be increased drastically at polymerization temperature of $110^{\circ}C$.

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.