• Title/Summary/Keyword: Study design

Search Result 80,397, Processing Time 0.096 seconds

Effect of Integrated-Simulation Practice Education on Nursing Students' Communication Ability, Learning Confidence, Clinical Reasoning Competence, and Clinical Performance (통합시뮬레이션 실습 교육이 간호대학생의 의사소통능력, 학습자신감, 임상추론역량, 임상수행능력에 미치는 효과)

  • Mi-Jung Kim;Eun-Ha Na
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.683-692
    • /
    • 2024
  • This study aimed to examine the effects of integrated simulation practice education for nursing college students on their communication skills, self-efficacy in learning, clinical reasoning ability, and clinical performance through a pre-post quasi-experimental design with a single group. The participants were 41 fourth-year nursing college students from a university located in G City, and the intervention took place from September to November 2023 over a period of nine weeks. The collected data were analyzed using SPSS 23.0, and the research findings are as follows. First, after simulation practice education, significant effects were observed in self-efficacy in learning (t=-2.21, p=.033), clinical reasoning ability (t=-2.97, p=.005), and clinical performance (t=-2.84, p=.007), but no significant difference was found in communication skills (t=-.224, p=.824). Second, after simulation classes for nursing students, clinical performance showed significant positive correlations with communication skills (r=.650, p<.001), self-efficacy in learning (r=.440, p<.001), and clinical reasoning ability (r=.824, p<.001). Based on these results, integrated simulation practice education for nursing students appears to be an effective educational method for enhancing their self-efficacy in learning, clinical reasoning ability, and clinical performance. To improve nursing students' clinical performance, it is necessary to operate simulation practices with various scenarios.

Development of Radar System for Laser Tracking System (레이저 추적 시스템을 위한 레이더 시스템 개발)

  • Ki-Pyoung Sung;Hyung-Chul Lim;Man-Soo Choi;Sung-Yeol Yu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Korea Astronomy and Space Science Institute (KASI) developed an satellite laser ranging (SLR) system for tracking space objects using ultra-pulsed lasers. For the safe operation of SLR system, aircraft surveillance radar system (ASRS) was developed to prevent human damage from high power laser transmitted from the SLR system. The ASRS consists of the radar hardware subsystem (RHS) and main control subsystem (MCS), in order to detect flying objects in the direction of laser propagation and then stop immediately the laser transmission. The RHS transmits the radio frequency (RF) pulse signals and receives the returned signals, while the MCS analyzes the characteristics of received signals and distinguishes the existence of flying objects. If the flying objects are determined to be existed, the MCS sends the command signal to the laser controller in SLR system to pause the laser firing. In this study, we address the interface and operational scenarios of ASRS, including the design of RHS and MCS. It was demonstrated in the aircraft experiments that the ASRS could detect an aircraft and then stop transmitting high power laser successfully.

Changes in Fermentation Characteristics and Microbial Community According to Microbial Additives and Storage Periods on Corn Silage (옥수수 사일리지에서 미생물 첨가제와 저장기간이 발효 품질과 미생물 군집에 미치는 영향)

  • Seung Min Jeong;Hyung Soo Park;Jae Hoon Woo;Ji Hye Kim;Dong Hyun Kim;Bo Ram Choi;Mirae Oh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.113-117
    • /
    • 2024
  • This study was conducted to find a way to improve quality by observing changes in quality and microbial communities according to whether corn silage was treated with additives and the storage period, and to utilize them as basic research results. The experimental design was performed by 2×4 factor desigh, and the untreated (CON), and the additive inoculated (ADD) silage were stored and fermented for 30 (TH), 60 (ST), 90 (NT), and 120 (OHT) days, with each condition repeated 3 times. There was no change in the nutrient content of corn silage according to additive treatment and storage period (p>0.05). However, the change in DM and the increase in the relative proportions of lactic acid content and Lactobacillales according to the storage period (p<0.05) indicate that continuous fermentation progressed until OHT days of fermentation. Enterobacterales (33.0%), Flavobacteriales (14.4%), Sphingobacteriales (12.7%), Burkholderiales (9.28%) and Pseudomonadales (6.18%) dominated before fermentation of corn silage, but after fermentation, the diversity of microorganisms decreased sharply due to the dominance of Lactobacillales (69.4%) and Bacillales (11.5%), Eubacteriales (7.59%). Therefore, silage maintained good fermentation quality with or without microbial additives throughout all fermentation periods, but considering the persistence of fermentation even in long-term storage and the aerobic stability, it would be advantageous to use microbial additives.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Evaluation of Shear Behavior of Reinforced Concrete Beams with FRCM Composites with Different Textile Grid Types (텍스타일 그리드 종류가 다른 FRCM 복합재를 적용한 철근콘크리트 보의 전단거동 평가)

  • Hyun Kong;Minsu Jo;Sua Lim;Donghwan Kim;Kilhee Kim
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.141-151
    • /
    • 2024
  • This paper presents the results of an experimental study to evaluate the shear behavior of reinforced concrete beams reinforced with FRCM composites using different types of textile grids. It was found that the shear behavior of reinforced concrete beams with FRCM composites was observed by comparing the strains measured in the stirrups and textile grids. It was found that the ultimate strength of the strengthened specimens increased compared to the basic specimens, and the failure mode at ultimate strength changed from shear failure to bending failure. When the shear strength design values of the KDS 14 20 22 and AIJ ultimate strength types were compared with the actual experimental values, it was found that the AIJ ultimate strength type was more accurate. In addition, the shear contribution of FRCM composites in the A and T models was compared, and the results showed that both models had similar trends. Reflecting these results, it is recommended that further studies should be conducted to calculate the shear performance of beam members with FRCM composites and the shear contribution of FRCM composites by using the stirrup reinforcement ratio and the type of textile grid as variables.

Analysis of research trends on infants and school-age-child: Focusing on Journal of The Korean Society for School & Community Health Education from 2000 to 2023 (영·유아기 및 학령기 아동에 관한 연구동향 분석: 2000~2023년 한국학교·지역보건교육학회지 게재논문을 중심으로)

  • Hee-Jung Park;Minsung Sohn;Seok Hwan Kim
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.25 no.3
    • /
    • pp.39-49
    • /
    • 2024
  • Purpose: This study aims to analyze the current status of research related to infants and school-age-child published in the journal of Korean society for school & community health education from 2000 to 2023, with the goal of contributing to the future development and enhancement of the journal. Method: From 2000 to 2023, 52 papers were analyzed, comparing and classifying their journal topic, research types, data collection methods, and data analysis methods. Results: The results shows that the highest publication trend occurred between 2008 and 2012, with most studies focusing on school-age children. In terms of research topic, 'health behavior and health education' was the most frequent with 14 papers (26.9%), followed by oral health with 9 papers (17.3%), safety management with 7 papers (13.5%), and sexual awareness with 6 papers (11.5%). Quantitative research was the most common research type, with surveys being the primary data collection method. Descriptive statistics and t-test were the most frequently used data analysis methods. Conclusion: To enhance the quality of the journal of Korean society for school & community health education, there should be an expansion of evidence-based research focusing on infants and school-age children. Additionally, there is a need for greater diversity in research design, data collection, and analysis methods.

Antibacterial Properties of Extracts from Abies holophyllaand Pinus koraiensisNeedles Against Escherichia coli and Staphylococcus aureus (전나무와 잣나무 잎 추출물의 대장균과 황색포도상구균에 대한 항균특성)

  • Young Woo Choi;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.248-254
    • /
    • 2024
  • In this study, functional substances with antibacterial properties were extracted from the needles of Abies holophylla and Pinus koraiensis, and optimized using the central composite design-response surface methodology (CCD-RSM). The optimal extraction conditions for Abies holophylla were an extraction temperature of 59.5 ℃ and an ethanol/ultrapure water volume ratio of 69.5 vol.%, resulting in an extraction yield of 13.5% and inhibition diameters of 11.6 mm against Escherichia coli (E. coli) and 9.3 mm against Staphylococcus aureus (S. aureus). For Pinus koraiensis, the optimal extraction conditions were an extraction temperature of 59.2 ℃ and an ethanol/ultrapure water volume ratio of 67.8 vol.%, resulting in an extraction yield of 4.8% and inhibition diameters of 7.9 mm against E. coli and 12.5 mm against S. aureus. The actual experimental results under these optimal conditions showed that an extraction yield from Abies holophylla needles was 13.0% and an inhibition diameter of 11.7 mm against E. coli and 9.2 mm against S. aureus, indicating an error rate of approximately ± 2.3%. For Pinus koraiensis needles, the extraction yield was 5.1%, with inhibition diameters of 7.5 mm against E. coli and 12.3 mm against S. aureus, indicating an error rate of ± 4.23%.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

A Study on Design and Analysis of Module Control Method for Extended Use of Rechargeable Batteries in Mobile Devices (모바일 장치의 충전식 배터리 사용 연장을 위한 모듈 제어 방법 설계와 해석 연구)

  • Dohyeong Kim;jihoon Ryu;JinPyo Jo;JeongHo Kim
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • This paper proposes a dynamic clock supply control algorithm and a system load power stabilization algorithm that minimizes the power consumption of the sensing system, which accounts for the largest percentage of power consumption in mobile devices, to extend the usage time of the rechargeable battery mounted on the mobile device. The dynamic clock supply control algorithm can reduce the power consumed by the sensing system by configuring a circuit to cut off the power of the sensing system and by recognizing the state of low sensor change and adjusting the measurement cycle. The system load power stabilization algorithm is an algorithm that controls the power of the surrounding module according to the power consumption state, and when it requires a lot of power, it controls the clock supply to stabilize the operation. The experimental results confirmed that applying only the dynamic clock supply control algorithm reduces the power consumed by the sensing system by 17%, and applying only the system load power stabilization algorithm reduces power consumption by 9.3%, enabling it to operate stably in situations that require a lot of power such as image processing. When both algorithms were applied, the power consumption of the battery was reduced by 67% compared to before applying the algorithm. Through this, the reliability of the proposed method was confirmed.

  • PDF

Preparation of Cosmeceuticals Containing Scutellaria baicalensis Extracts: Optimization of Emulsion Stability and Antibacterial Property (황금추출물이 함유된 Cosmeceuticals의 제조: 유화안정성 및 항균특성 최적화)

  • Seheum Hong;Young Woo Choi;Wenjia Xu;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.316-320
    • /
    • 2024
  • To optimize the emulsion stability and antibacterial activity against Escherichia coli (E. coli) of cosmeceuticals using Scutellaria baicalensis extracts and olive wax as natural emulsifiers, we conducted a study. The independent variables were the amounts of Scutellaria baicalensis extracts and olive wax added. The response variables included the emulsion stability index (ESI) of the cosmeceuticals product and the inhibition diameter against E. coli. Through central composite design-response surface methodology (CCD-RSM), we obtained a statistically significant and reliable regression equation within a 95% confidence interval. By optimizing multiple responses, we determined that the optimal emulsification conditions that satisfied both ESI and E. coli inhibition diameter were 3.7 wt% of Scutellaria baicalensis extracts and 2.7 wt% of olive wax. The predicted ESI and E. coli inhibition diameter were 97.9% and 9.7 mm, respectively. When actual experiments were conducted under the optimal conditions, the measured ESI and E. coli inhibition diameter were 95.0% and 9.4 mm, respectively, with an average error rate of 3.2 ± 0.4%.