• 제목/요약/키워드: Studentized Residual

검색결과 11건 처리시간 0.018초

The Asymptotic Variance of the Studentized Residual Autocorrelations for a Generalized Random Coefficient Autoregressive Processes

  • Park, Sang-Woo;Cho, Sin-Sup;Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • 제26권4호
    • /
    • pp.531-541
    • /
    • 1997
  • The asymptotic distribution of residual autocorrelation functions from a generalized p-order random coefficient autoregressive process (GRCA(p)) is derived. To this end, we first describe the GRCA(p) models and then consider the normalised residuals after fitting the model. This result can be applied to the residual analysis for the diagonostic purpose.

  • PDF

Rejecting Outliers by Maximum Modified Normed Residual

  • Kim, Soon Kwi
    • 품질경영학회지
    • /
    • 제13권2호
    • /
    • pp.56-60
    • /
    • 1985
  • One may be particularly interested in identifying which are the genuinely exceptional observations, in order to create a new insight into the phenomena under study. To detect outliers, many statistics have been proposed such as the maximum normed residual (MNR), a statistic equivalent to the maximum normed residual C. Daniel proposed, studentized residual, standardized residual, and so on. This paper gives a procedure for calculating critical values of the maximum modified normed residual and the distribution of the modified normed residual.

  • PDF

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF

A New Landsat Image Co-Registration and Outlier Removal Techniques

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.439-443
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a timeconsuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

AGE ESTIMATION TECHNIQUE OF INDUSTRIALIZED TIMBER PLANTATION USING VARIOUS REMOTE SENSING DATA

  • Kim, Jong-Hong;Heo, Joon;Park, Ji-Sang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.94-97
    • /
    • 2006
  • Timber stand age information of timber in industrialized plantation forest is generally collected by field surveying which is labor-intensive, time-consuming, and very costly. It is also inconsistent in analyses perspective. As an alternative, The objective of this research is to present a practical solution for estimating timber age of loblolly pine plantation using Landsat thematic mapper (TM) images, shuttle radar topography mission (SRTM), and national elevation dataset (NED). A multivariate regression model was developed based upon satellite image-based information (i.e.normalized difference vegetation index (NDVI), tasseled cap (TC) transformation, and derived tree heights). A residual studentized technique was applied to remove potential outliers. After that, a refined age estimation model with a correlation coefficient R-square of 84.6% was obtained. Finally, the feasibility test of estimated model was performed by comparing estimated and measured stand ages of timber plantations using test datasets of plantation stands (2,032 stands). The result shows that the proposed method of this study can estimate loblolly pine stand age within an error of $2{\sim}3$ years in an effective and consistent way in terms of time and cost.

  • PDF

사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록' (Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection)

  • 김종홍;허준;손홍규
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.687-693
    • /
    • 2006
  • 최근 전 지구적, 혹은 대규모 지역의 분석 및 모니터링을 위한 위성영상의 사용이 늘어나고 있으며 이를 처리하기 위해 빠르고 편리한 '영상좌표 상호등록'방법이 요구되고 있다. 이러한 '영상좌표 상호등록'은 위성의 센서모델 및 천체력 자료를 이용하는 엄밀 모델식을 이용하는 방법과 기 존재하는 기준 영상(Reference image)을 사용하거나 혹은 수치지도를 사용하는 경험적 방법의 두 가지로 분류할 수 있다. '영상좌표 상호등록'의 효율성을 높이기 위해서 저자는 '사전검수 영역기반정합법'(Pre-qualified area matching)을 사용하였다. 이는 Canny 연산자를 이용한 경계추출법, 교차상관계수를 사용한 영역기반정합법(Area based matching), t-분포를 이용하여 95%의 신뢰구간 내에서 과대오차 소거법을 적용한 방법이다. 이러한 사전검수(Pre-qualification) 과정을 통해 연산시간을 현저히 단축시켰고, '영상좌표 상호등록'의 정확도 역시 향상됨을 알 수 있었다. 제안한 알고리즘을 사용하여 프로그램을 작성하고, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.435 영상소, 정합점은 평균 25,573개로 나타났다. 연산 시간은 3.0GHz 1Gb RAM 사양의 컴퓨터에서 평균 약 4.2분으로 나타났다.

Regression and Correlation Analysis via Dynamic Graphs

  • Kang, Hee Mo;Sim, Songyong
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.695-705
    • /
    • 2003
  • In this article, we propose a regression and correlation analysis via dynamic graphs and implement them in Java Web Start. For the polynomial relations between dependent and independent variables, dynamic graphics are implemented for both polynomial regression and spline estimates for an instant model selection. The results include basic statistics. They are available both as a web-based service and an application.

Detecting Influential Observations on the Smoothing Parameter in Nonparametric Regression

  • Kim, Choong-Rak;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.495-506
    • /
    • 1995
  • We present formula for detecting influential observations on the smoothing parameter in smoothing spline. Further, we express them as functions of basic building blocks such as residuals and leverage, and compare it with the local influence approach by Thomas (1991). An example based on a real data set is given.

  • PDF

Simultaneous Identification of Multiple Outliers and High Leverage Points in Linear Regression

  • Rahmatullah Imon, A.H.M.;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.429-444
    • /
    • 2005
  • The identification of unusual observations such as outliers and high leverage points has drawn a great deal of attention for many years. Most of these identifications techniques are based on case deletion that focuses more on the outliers than the high leverage points. But residuals together with leverage values may cause masking and swamping for which a good number of unusual observations remain undetected in the presence of multiple outliers and multiple high leverage points. In this paper we propose a new procedure to identify outliers and high leverage points simultaneously. We suggest an additive form of the residuals and the leverages that gives almost an equal focus on outliers and leverages. We analyzed several well-referred data set and discover few outliers and high leverage points that were undetected by the existing diagnostic techniques.

  • PDF

사전검수 영역기반 정합법을 활용한 영상좌표 상호등록 (Automated Image Co-registration Using Pre-qualified Area Based Matching Technique)

  • 김종홍;허준;손홍규
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.181-185
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea showed: (1) average RMSE error of the approach was 0.436 Pixel (2) the average number of matching points was over 38,475 (3) the average processing time was 489 seconds per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

  • PDF