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Abstract

The identification of unusual observations such as outliers and high 
leverage points has drawn a great deal of attention for many years. Most 
of these identifications techniques are based on case deletion that focuses 
more on the outliers than the high leverage points. But residuals together 
with leverage values may cause masking and swamping for which a good 
number of unusual observations remain undetected in the presence of 
multiple outliers and multiple high leverage points. In this paper we 
propose a new procedure to identify outliers and high leverage points 
simultaneously. We suggest an additive form of the residuals and the 
leverages that gives almost an equal focus on outliers and leverages. We 
analyzed several well-referred data set and discover few outliers and high 
leverage points that were undetected by the existing diagnostic techniques.

Keywords : Added residual and leverage, Generalized potentials, 
Generalized Studentized residuals, High leverage points, Outliers

1. Introduction

The ordinary least squares (OLS) technique is the most popular and commonly 

used regression techniques despite all of its shortcomings. Under usual 

assumptions OLS estimators have some nice and desirable properties, but the 

violation of these assumptions has drastic consequences on the presence of one or 

more unusual observations in the data set. In a regression problem 

1) First Author : Department of Statistics, Univ. of Rajshahi, Rajshahi-6205,Bangladesh. 
   Currently, Visiting Professor, Department of Mathematical Sciences, Ball State Univ., 
   Muncie, IN 47306-0490 USA.
   E-mail : imon_ru@yahoo.com

2) Corresponding Author : Department of Mathematical Sciences, Ball State University,
   Muncie, IN 47306-0490 USA. 
   E-mail : mali@bsu.edu



A.H.M. Rahmatullah Imon ․ M. Masoom Ali430

observationsthat fail to match with the fitted model are termed as outliers and 

highly unusual   observations among the explanatory variables are known as high 

leverage points. The identification of outliers is really necessary because the 

presence of a single outlier may break down the entire OLS analysis. On the 

other hand the identification of high leverage points is really necessary because 

the presence of these points makes the identification of outliers very difficult.

A good number of detection methods are now available in the literature for the 

identification of outliers and high leverage points. In section 2, we briefly discuss 

different issues and techniques for the detection of outliers and high leverage 

points. Most of the diagnostic methods deal the issues of outliers and high 

leverage points separately. We propose a new technique in section 3 based on the 

added form of residuals and leverages so that observations unusual in either 

direction would be easily detected. We present few examples in section 4 to show 

how this newly proposed technique works to identify outliers and high leverage 

points simultaneously. 

 

2. Outliers and High Leverage Points

We write a standard regression model as 

∈+= βXY                              (2. 1)

where Y is an 1×n  vector of response or dependent variables, X is an 

( )knkn >×  matrix of explanatory variables including one constant, β  is a 
1×k  vector of unknown finite parameters and ∈  is an 1×n  vector of random 

disturbances. We can re-express the general linear model (2.1) by

i
T
ii xy ∈+= β ,             i  = 1, 2, ..., n  

where yi is the i-th observed response and  xi is a 1×k  vector of explanatory 

variables. The OLS estimates of the regression parameters are 

( ) YXXX TT 1ˆ −
=β . Thus the i-th residual is given by

β̂ˆ T
iii xy −=∈ ,        i  = 1, 2, ..., n                 (2.2)

In matrix notation (2.2) becomes
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β̂ˆ XY −=∈

which can also be expressed as 

∈−=∈ )(ˆ WI

where ( ) TT XXXXW
1−

=  which is generally known as weight matrix or 

leverage matrix.

In regression analysis it is sometimes very important to know whether any set 

of X-values are exerting too much influence on the fitting of the model. A set of 

influential X-values is known as a high leverage point. The diagonal elements of 

W, denoted as iiw and defined by

( ) i
TT

iii xXXxw
1−

= ,         i  = 1, 2, ..., n                (2.3)

are called the leverage values. Observations corresponding to excessively large wii  

values are termed as high leverage points.

 

Much work has been done on the identification of high leverage points in linear 

regression. Most of them are based on the examination of wii values as defined in 

(2.3) [see Imon (2002)]. Well known Mahalanobis distances are also suggested to 

use as measures of leverages in the literature, but Mahalanobis distance for each 

of the points has a one-to-one relationship with iiw [see Rousseeuw and Leroy 
(1987)]. Hadi (1992) introduced a single case deleted measure of leverages known 

as potentials. The i-th potential is defined as 

p x X X xii i
T

i
T

i i=
−

( )( ) ( )
1

                         (2.4)

where )(iX  is the data matrix X with the i-th row deleted. Observations 

corresponding to excessively large potential values are considered as high leverage 

points.

  

It is reported by many authors [see Rousseeuw and Leroy (1987), Imon (2002)] 

that the presence of multiple high leverage points may cause masking and 

swamping because of which outliers and/or high leverage points become 

undetected and some innocent observations may be detected as outliers and/or 

high leverage points. That is why group deleted leverages are suggested in the 

literature [see Imon (2002)] when the presence of multiple high leverage points 

makes the detection of genuine outliers and high leverage points cumbersome. 
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Multivariate outlier detection methods [see Pea and Prieto (2001), Marona and 

Zamar (2002)] can be used to identify multiple high leverage points in linear 

regression.  

Excellent reviews of different aspects of outliers in linear regression are 

available in Rousseeuw and Leroy (1987), Barnett and Lewis (1994), Ryan (1997) 

and Sengupta and Jammalamadaka (2003).  In a regression problem, observations 

possessing excessively large residuals are simply known as outliers. A variety of 

identification procedures for single outliers have been suggested in the statistical 

literature to detect outliers in a regression problem. Most of them are based on 

the modification of the OLS residuals and they seem to be successful for the 

identification of a single outlier [see Hawkins, Bradu, and Kass (1984)]. But 

because of masking and swamping effects, the detection of outliers has become 

extremely difficult when a group of outliers are present in the data. Most multiple 

outlier identification methods attempt to separate the data into a 'clean'subset 

without outliers and a complementary subset that contains all the potential outliers 

[see Barnett and Lewis (1994)]. Some indirect approaches are available in the 

statistical literature to identify outliers by robust techniques through a robust 

regression estimate. Among them least median of squares proposed by Rousseeuw 

(1984), reweighted least squares and least trimmed squares (LTS) proposed by 

Rousseeuw and Leroy (1987) have become popular with the statisticians. Some 

approaches combining diagnostic and robust approaches together [see Hadi and 

Simonoff (1993), Atkinson (1994), Davies et al. (2004)] are also available in the 

literature for the identification of multiple outliers in linear regression.  

3. Measures as an Additive Form of Residuals and Leverages

Most of the existing diagnostic statistics focus on the issue of the identification 

of outliers and high leverage points separately. But it is now evident [see Pea and 

Yohai (1995)] that the presence of one type of observation may cause problem to 

detect the other type of observations. Some diagnostic measures like Cook's 

distance or DFFITS focus on both of these two types of cases. But the main 

problem with this kind of statistics as indicated by Hadi (1992) is that they are 

expressed as a multiplicative form of residuals and leverages. The values of these 

statistics could be misleadingly small if either residuals or leverages used in these 

statistics are small and consequently, they could fail to identify potential outliers 

or leverage points. Hadi (1992) suggested using a new diagnostic measure, which 

is an additive form of the residuals and of the leverages and hence assumes large 

values for observations that have either large residuals or large leverage values, 

or both. He proposed to use
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                    (3.1)

that is likely to focus equally tothe residuals and the leverage values in measuring 

influence of any observation. As a cut-off point for 
2
iH , he suggested using

Median (
2
iH ) + c MAD (

2
iH )

where MAD (
2
iH ) = Median {|

2
iH - Median (

2
iH )|}/ 0.6745 and cis an 

appropriately chosen constant such as 2 or 3. 

Hadi's idea of looking for an additive function of the residuals and of the 

leverages are intuitively appealing, but since 
2
iH is basically a single case 

diagnostic measure, because of masking and/or swamping, it may fail to identify 

multiple outliers and multiple high leverage points. However, it is interesting to 

note from (3.1) that 
2
iH can be expressed as

( ) ( ) ii

ii

iii

i
i w

w
wkn

kH
−

+
−

∈
−−

=
11ˆ

ˆ
)1( 2

2
2

σ  ,         i = 1, 2, ..., n      (3.2)

Here the residual part is multiplied by k / (n  k  1) to give an equal weight to 

residuals and leverages, as the value of the second part of 
2
iH is k / (n  k  1) 

when wii  is replaced by its average value k / n. 

Let us denote a set of cases 'remaining' in the analysis by R and a set of 

cases 'deleted' by D. Hence R contains  (n-d) cases after d < (n-k) cases in 

Dare deleted. Without loss of generality, assume that these observations are the 

last of d rows of X and Y. When a group of observations D is omitted, we define 

nixXXxw iR
T
R

T
i

D
ii ,...,2,1,)( 1)( == −−

               (3.3)

where RX  is the data matrix X after the deletion of a group of observation 

indexed by D. It should be noted that 
)D(

iiw
−
 is the i-th diagonal element of the 

matrix 
T

R
T
R X)XX(X 1−

.  We observe that (3.3) is an extension of the potentials 

defined in (2.4). For the identification of multiple high leverage points, Imon (2002) 
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suggested using the values

                              
)(

)(
*

1 D
ii

D
ii

ii w
wp −

−

−
=

     for   iR

)D(
iiw

−=          for   iD                (3.4)

where D  is a set points containing suspect high leverage points. 

We also define a group-deleted version of residuals

                
∗
it = 

( )
( )D
iiR

R
T
ii

w

xy
−−

−

1ˆ

ˆ

σ

β

                for  Ri ∈  

= 

( )
( )D
iiR

R
T
ii

w

xy
−+

−

1ˆ

ˆ

σ

β

                for  Ri ∉               (3.5)

This type of residuals has been in use [see Hadi and Simonoff (1993), Atkinson 

(1994), Imon (2005a, 2005b)] for the identification of multiple outliers. Clearly, 

when Ri ∈ , 
∗
it is the i-th internally Studentized residual and when Ri ∉ , 

∗
it is 

the i-th externally Studentized residual based on the subset R. In this paper we 

shall call 
∗
it  as they are defined in (3.5) generalized Studentized (GS) residuals. 

One possible group-deleted version of 
2
iH  could be 

( ) ∗∗− +
−−

= iii
D

i pt
dkn

kH
22

)( ,         i = 1, 2, ..., n       ( 3.6)  

as suggested by Imon (2005a). But the problem with this statistic (3.6) is that 

both of its residual and leverage parts are unbounded and that is why multiplying 

the square of 
∗
it  by k/(n-k-d) does not guarantee that the residuals and 

leverages will get an equal importance. For this reason we suggest using

ARLi = 1k |
∗
it | + 2k

*
iip ,            i = 1, 2, ..., n            (3.7)

where 1k = ∑=
∗

n

i
it

1
||
 and 2k = ∑=

n

i
iip

1

*

. Like Hadi's 
2
iH statistic, it may be very 
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complicated to obtain any theoretical distribution for ARLi, but that may not make 

any problem to obtain suitable cut-off points for them. We propose to use a 

confidence bound type cut-off value for ARLi given by

ARLi  > Median (ARLi )+ c MAD (ARLi)                 (3.8)

which we believe should be fairly robust even in many complicated situations. As 

usual c is any arbitrary chosen value between 2 and 3.  The choice of c is 

analogous to the idea of considering 2σ  or 3σ distance of a statistic, which is 
used quite often [Rousseeuw and Leroy (1987)] in the study of outlier detection.

 

Here the choice of the deletion set D is really important. For Hadi's 
2
iH  we do 

not have similar choice, each and every observation in turn is deleted to compute 
2
iH . But the entire set of ARLi values depend on the selection of D. At first we 

would like to obtain a data set containing all suspect outliers and high leverage 

points. We would like to give an equal emphasis on both of these unusual cases. 

At the initial stage we would alsolike to mark outliers and high leverage points 

separately. For the identification of suspect outliers we would use the robust 

reweighted least squares (RLS) residuals proposed by Rousseeuw and Leroy 

(1987).To compute the RLS residuals, a regression line is fitted without the 

observations identified as outliers by the LMS technique. The residuals 

corresponding to outliers are computed externally here and that is why they show 

their real pictures. The entire set of RLS residuals is computed using the program 

PROGRESS developed by Rousseeuw and Leroy (1987). For the identification of 

suspect high leverage points we would consider a method suggested by Imon 

(2002). For a k variable regression, the j-th point of any regressor iX  can be 
treated as suspect high leverage points when it falls outside the interval

Median ( iX ) ±  c MAD ( iX ),     i = 1,2, ...,k    j = 1,2, ..., n.       (3.9)

Not necessarily, the same data points (if any) of each regressor will satisfy the 

rule (3.9). We would like to include all data points as suspect high leverage points 

if they satisfy rule (3.9) for any iX .

All observations marked as suspect outliers and high leverage points will now 

consist the initial deletion set say, 0D . If there is no such observation, we can 
say at the very beginning that there exist no outliers and/or high leverage points 

in the data. However we would not allow 0D  to take more than 50% 
observations, otherwise it will be very difficult to distinguish usual observations 
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from unusual. After the selection of the initial deletion set 0D  we would proceed 
with testing for multiple outliers and high leverage points using the ARL statistic 

defined in (3.7). We would fit the regression model by the least squares 

techniques after deleting the cases belonging to 0D  set. Then the ARL values are 

computed for the entire data set. If all of the members of the deletion set 0D  
individually satisfy the rule (3.8) this set is considered as our final deletion set 

and all members of this set are declared as unusual.

We anticipate that sometimes the rules for the selection of initial deletion set 

may be very sensitive and that is why, it is not unlikely that some of the 

innocent observations are swamped in as outliers in either of the spaces or both. 

So it may be necessary for checking in swamping before the declaration of any of 

the observations as outliers or high leverage points. Sometimes we may observe 

that one or more of the members of 0D  do not satisfy the rule (3.8). So these 
members are not potential outliers or high leverage points. At this stage, we can 

put back all the observations that fail to satisfy rule (3.8) together into the 

estimation subset. But we prefer to put them back sequentially; observations 

possessing the lowest ARLi values will be the first member coming back to the 

estimation subset. We will continue this process till all of the members of the 

revised deletion set individually satisfy the rule (3.8). This set is considered as 

our final deletion set and all members of this set are declared as outliers or high 

leverage points or both.

4. Examples

In this section we consider a few well-known data sets, which are frequently 

referred to in the study of the identification of outliers. We would like to compare 

our newly proposed diagnostic methods with the other existing ones to identify 

outliers and high leverage points (if any) using these data sets. For these 

examples we have considered three different values of c as 2.0, 2.5 and 3.0. We 

observe that results obtained from different choices of c do not differ significantly. 

For the purpose of illustration, we consider c = 2.0 in the numerical examples.     

4.1 Hawkins-Bradu-Kass (1984) data

Hawkins, Bradu and Kass (1984) constructed an artificial three-predictor data 

set containing 75 observations with 10 high leverage outliers (cases 1-10), 4 high 

leverage points (cases 11-14) and 61 low leverage inliers (cases 15-75).  Most of 

the single case deletion identification methods fail to identify the outliers though 
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some of them point out high leverage points as outliers [see Rousseeuw and 

Leroy (1987)]. On the other hand robust detection techniques like LMS and RLS 

and the method proposed by Hadi and Simonoff (1993) identify outliers correctly, 

but do not focus on the high leverage points.

Table 1(a) presents few single case diagnostics including Hadi's 
2
iH  statistic. 

The cut-off values for each of the statistics are presented inside the parantheses. 

Sometimes Studentized residuals are used to detect outliers and cases having 

values greater than 2.5 are suspects. For this data only observations 11-14 have 

significant t values.  Cook's CDiidentifies observation 14 as outlier, whereas the 

DFFITS mark cases 11-14 as outlier. The leverage values iiw 's are not big and 
if any one considered Velleman and Welsch (1981)'s 'thrice-the-mean' rule only 

observation 14 appears to be unusual. Hadi's potential values identify cases 11-14 

as high leverage points. The added residual leverage measure like 
2
iH  identifies 

case 11, 12 and 14 as unusual.

Table 1(a). Single case diagnostics for the first 14 observations of Hawkins et al. data

Index it  (2.50) iiw (0.16) iip  (0.11) CDi   (1.0) DFFITSi  (1.0)
2
iH (0.72)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1.55

1.83

1.40

1.19

1.41

1.59

2.08

1.76

1.26

1.41

-3.66

-4.50

-2.88

-2.56

0.063

0.060

0.086

0.086

0.081

0.073

0.068

0.063

0.080

0.087

0.094

0.144

0.109

0.564

0.067

0.064

0.094

0.088

0.079

0.082

0.073

0.067

0.087

0.095

0.104

0.169

0.122

1.292

0.04

0.05

0.05

0.03

0.04

0.05

0.08

0.05

0.03

0.05

0.35

0.85

0.25

2.11

0.41

0.47

0.43

0.35

0.40

0.46

5.57

0.46

0.37

0.44

-1.30

-2.17

-1.07

-3.03

0.21

0.26

0.21

0.17

0.19

0.23

0.33

0.25

0.18

0.21

1.01

1.68

0.64

1.68

Now we apply the proposed algorithm to this data. At the initial stage rule (3.9) 

defined in the previous section identifies 14 observations (cases 1-14) as high 

leverage points. The robust RLS marks observations 1-10 as outliers.  Thus our 

initial deletion set 0D contains 14 observations (cases 1-14) as prime suspect. 
These 14 observations are now omitted to compute the ARLi values for the entire 
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data set. When these observations are omitted from the OLS fit, we observe from 

Table 1(b) that all of their corresponding ARLi values are significantly higher 

than the cut-off value and no other observations possesses high ARLi value. Thus 

we finally declare observations 1-14 as jointly unusual. 

It is also interesting to observe from the generalized weights and generalized 

Studentized residuals presented in Table 1(b) that observations 1-10 have 

significantly high residuals and observations 1-14 have significantly high 

leverages. As the ARLi values give an equal focus on leverages and residuals, we 

observe that cases 1-14 have significantly high ARLi values and they are 

considered as either outliers or high leverage points.

Table 1(b). Added residual and leverage diagnostics for Hawkins et al. (1984) data

Sl 

no.

*
iip  

(0.152)

∗
it  

(2.50)

ARLi 

(0.024)

Sl 

no.

*
iip  

(0.152)

∗
it  

(2.50)

ARLi 

(0.024)

Sl 

no.

*
iip  

(0.152)

∗
it  

(2.50)

ARLi 

(0.024)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

14.46

15.22

16.97

18.02

17.38

15.61

15.70

14.82

17.03

15.97

22.39

24.03

22.73

28.16

0.091

0.104

0.086

0.027

0.046

0.096

0.036

0.072

0.041

0.047

0.090

5.35

5.44

5.32

4.89

5.15

5.31

5.65

5.59

5.04

5.31

0.95

0.90

1.20

0.87

-0.76

0.79

-0.34

0.11

0.36

0.76

1.70

0.83

-1.57

1.19

-0.57

0.104

0.107

0.113

0.113

0.113

0.108

0.111

0.107

0.111

0.109

0.094

0.100

0.097

0.115

0.007

0.008

0.003

0.001

0.003

0.007

0.016

0.008

0.014

0.011

0.006

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

0.069

0.090

0.036

0.039

0.100

0.070

0.073

0.046

0.094

0.082

0.040

0.092

0.056

0.075

0.037

0.094

0.076

0.104

0.092

0.080

0.081

0.115

0.082

0.062

0.056

-1.13

-1.14

0.72

0.56

-0.02

-0.17

-0.76

-1.01

-1.19

0.75

-1.45

-0.65

1.52

-1.28

-0.75

-0.02

-0.79

1.24

-0.86

-1.00

-0.34

-1.90

0.40

1.65

-0.44

0.011

0.011

0.007

0.005

0.001

0.002

0.007

0.009

0.011

0.007

0.013

0.006

0.014

0.012

0.007

0.001

0.007

0.012

0.008

0.009

0.003

0.018

0.004

0.015

0.004

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0.058

0.098

0.139

0.083

0.050

0.066

0.050

0.072

0.046

0.099

0.111

0.090

0.076

0.080

0.060

0.055

0.022

0.099

0.072

0.050

0.034

0.032

0.048

0.058

0.096

1.08

-1.07

2.02

1.18

0.08

0.10

1.21

-0.22

-0.17

-1.07

-0.06

1.08

-0.68

-0.71

1.41

-1.54

-1.23

1.35

0.20

1.72

0.52

-0.16

1.10

-1.37

0.86

0.010

0.010

0.019

0.011

0.001

0.001

0.011

0.002

0.002

0.010

0.001

0.010

0.006

0.007

0.013

0.014

0.011

0.013

0.002

0.016

0.005

0.002

0.010

0.013

0.009
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4.2 Stack loss data

Here we consider the stack loss data presented by Brownlee (1965) that have 

been extensively analyzed in the statistical literature. This three-predictor data set 

(Air flow, Cooling water inlet temperature and Acid concentration) contains 21 

observations with 4 outliers (observations 1, 3, 4, and 21). This data set has 

possibly 4 high leverage points (cases 1, 2, 3 and 21) [see Atkinson (1985)] but 

those are undetected by very recent diagnostic techniques though some times 

observation no. 17 is mistakenly declared [see Imon (2003)] as a high leverage 

point.

When the OLS technique is employed to the data we observe from Table 2(a) 

that most of the traditional diagnostic methods fail to focus on the unusual cases. 

Cook's distance does not identify any of the observations as outlier. Studentized 

residuals, DFFITS and Hadi's 
2
iH can identify only one (case 21) of the four 

outliers. Leverage values indicate that there is no high leverage point in the data 

set though potential values identifies case 17 as a high leverage point. 

Table 2(a). Single case diagnostics for stack loss data

Index it  (2.50) iiw  (0.571) iip  (0.497) CDi (1.0) DFFITSi  (1.0)
2
iH  (1.22)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

1.19
-0.72
1.55
1.89
-0.54
-0.97
-0.83
-0.48
-1.05
0.44
0.88
0.97
-0.48
-0.02
0.81
0.30
-0.61
-0.15
-0.20
0.45
-2.64

0.302
0.318
0.175
0.129
0.052
0.077
0.219
0.219
0.140
0.200
0.155
0.217
0.158
0.206
0.190
0.131
0.412
0.161
0.175
0.080
0.285

0.432
0.466
0.212
0.147
0.055
0.084
0.281
0.281
0.163
0.250
0.183
0.277
0.187
0.259
0.235
0.151
0.701
0.191
0.211
0.087
0.398

0.154
0.060
0.126
0.131
0.004
0.020
0.049
0.017
0.045
0.012
0.036
0.065
0.011
0.000
0.039
0.003
0.065
0.001
0.002
0.004
0.692

0.795
-0.481
0.744
0.788
-0.125
-0.279
-0.438
-0.251
-0.423
0.213
0.376
0.509
-0.203
-0.009
0.388
0.113
-0.502
-0.065
-0.091
0.131
-2.100

0.79
0.59
0.87
1.20
0.13
0.32
0.45
0.34
0.44
0.30
0.38
0.51
0.24
0.26
0.40
0.17
0.79
0.20
0.22
0.14
3.17



A.H.M. Rahmatullah Imon ․ M. Masoom Ali440

Table 2(b). Added residual and leverage diagnostics for stack loss data

Index
*
iip  (0.78)

∗
it  (2.5) ARLi (0.108) Index

*
iip  (0.78)

∗
it  (2.5) ARLi (0.108)

1

2

3

4

5

6

7

8

9

10

11

2.22

2.30

1.30

0.28

0.21

0.26

0.39

0.39

0.22

0.42

0.25

4.25

1.81

4.79

6.77

-0.02

-0.47

-0.05

0.72

-0.68

0.66

0.80

0.309

0.239

0.253

0.234

0.018

0.036

0.033

0.054

0.039

0.054

0.045

12

13

14

15

16

17

18

19

20

21

0.41

0.30

0.31

0.61

0.35

0.76

0.26

0.32

0.10

0.91

0.43

-1.64

-1.15

0.37

-0.42

-0.26

-0.18

0.17

1.77

-4.58

0.046

0.075

0.061

0.060

0.041

0.068

0.026

0.031

0.063

0.216

When we apply newly proposed diagnostic methods to stack loss data we 

initiallyfind 5 suspect cases. The robust RLS technique identifies cases 1, 3, 4 and 

21 as outliers. The rule based on generalized potentials mark observations 1, 2, 3 

and 21 as high leverage points. Thus our initial deletion set contains 5 

observations, cases 1, 2, 3, 4 and 21. When the model is fitted without these five 

points we observe from Table 2(b) that all of these observations have significant 

ARL values that confirms our suspicion that these observations are unusual. 

Observations 1, 2, 3 and 21 are being detected for possessing high leverages and 

observations 1, 3, 4 and 21 are being detected for possessing large residuals as 

indicated by the 
*
iip  and 

∗
it  values.

4.3 Delivery time data

Now we consider deliverytime data taken from Montgomery and Peck (1992). In 

this two predictor data we want to explain the time required to service a vending 

machine (Y) by means of the number of products stocked ( 1X ) and the distance 

walked by the route driver ( 2X ). This data set contains 25 observations.

Most of the detection techniques identify case 9 as an outlier and high leverage 

point. We observe from Table 3(a) that Studentized residuals, Cook's distance and 

DFFITS corresponding to this observation are very high which indicates that this 

is an outlier. This observation also possesses large leverage and potential values. 

Consequently its 
2
iH  value is significantly higher than the cut-off value and thus 

observation number 9 in all sense is declared as high leverage outlier. However, 
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we find another observation (case 22), as a high leverage point. Although its 

DIFFITS value is significant, its corresponding residual and Cook's distance are 

not significantly high and hence this observation is not identified as unusual by 

Hadi's 
2
iH . It is also interesting to note that the robust RLS identifies only 

observation 9 as an outlier. 

Table 3(a). Single case diagnostics for delivery time data

Index it  (2.50) iiw (0.36) iip  (0.581) CDi  (1.0) DFFITSi  (1.0)
2
iH  (1.29)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

-1.63

0.36

-0.02

1.58

-0.14

-0.09

0.27

0.37

3.21

0.81

0.72

-0.19

0.33

0.34

0.21

-0.22

0.14

1.11

0.58

-1.87

-0.88

-1.45

-1.44

-1.50

-0.07

0.102

0.071

0.099

0.085

0.075

0.043

0.082

0.064

0.498

0.196

0.086

0.114

0.061

0.078

0.041

0.166

0.059

0.096

0.096

0.102

0.165

0.392

0.041

0.121

0.067

0.113

0.076

0.110

0.093

0.081

0.045

0.089

0.068

0.993

0.244

0.094

0.128

0.065

0.085

0.043

0.199

0.063

0.107

0.107

0.113

0.198

0.643

0.043

0.137

0.071

0.100

0.003

0.000

0.078

0.001

0.000

0.002

0.003

3.493

0.054

0.016

0.002

0.002

0.003

0.001

0.003

0.000

0.044

0.012

0.132

0.051

0.451

0.030

0.102

0.000

-0.571

0.099

-0.005

0.501

-0.039

-0.019

0.079

0.094

4.330

0.399

0.218

-0.068

0.081

0.097

0.043

-0.097

0.034

0.365

0.186

-0.672

-0.389

-1.195

-0.308

-0.571

-0.018

0.41

0.02

0.00

0.38

0.00

0.00

0.01

0.02

2.65

0.09

0.07

0.01

0.01

0.02

0.01

0.01

0.00

0.18

0.05

0.57

0.11

0.32

0.31

0.34

0.00
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Table 3(b). Added residual and leverage diagnostics for delivery time data

Index
*
iip  (0.36)

∗
it  (2.5) ARLi (0.124) Index

*
iip  (0.36)

∗
it  (2.5) ARLi (0.124)

1

2

3

4

5

6

7

8

9

10

11

12

13

0.129

0.115

0.157

0.119

0.089

0.048

0.161

0.077

2.372

0.290

0.406

0.217

0.083

-1.88

-0.16

-0.54

1.63

-0.54

0.05

-0.71

0.53

5.22

1.64

2.86

0.23

0.02

0.085

0.020

0.039

0.074

0.030

0.007

0.045

0.029

0.474

0.095

0.154

0.034

0.011

14

15

16

17

18

19

20

21

22

23

24

25

0.09

0.07

0.31

0.07

0.12

0.16

0.96

0.32

1.71

0.07

0.17

0.09

0.78

1.08

1.34

-0.02

1.54

-0.19

-0.08

-1.00

1.54

-1.48

-1.36

-0.78

0.040

0.049

0.086

0.009

0.071

0.026

0.127

0.075

0.260

0.063

0.070

0.040

We now apply our newly proposed technique to identify unusual observation. As 

we have already mentioned that the RLS identifies case 9 as outlier, it is a 

suspect case in our study. But the generalized potential rule identifies cases 9, 11, 

20 and 22 as high leverage point. Thus our initial deletion set contains these 4 

observations. When these observations are omitted we observe from Table 3(b) 

that observations 9, 11, 20 and 22 have significant (based on c = 2.0 and c= 2.5) 

ARL values. Observation 9 possesses large residual and high leverage and 

observations 20 and 22 are detected for possessing high leverages. However, the 

observation 20, that possesses very low residual value, may be undetected for the 

choice of c= 3.0. But we identify observation 11 as an outlier and high leverage 

point, which, so far as we know, became undetected by the statisticians. This is 

an interesting example to show that in the presence of multiple outliers and high 

leverage points unusual cases may get masked in such a way that even robust 

detection techniques may fail to identify them.

It is worth mentioning that for the examples we consider in our study, we have 

the same initial and final deletion set, but these two deletion sets need not be 

equal. In many practical situations these two sets could differ because of the 

inherent feature of the data or the choice of the constant term cin the ARL 

statistic.   
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5. Conclusions

In this paper we propose a criterion for the simultaneous identification of 

outliers and high leverage points in linear regression. We develop a diagnostic 

procedure, ARL, based on the added form of residuals and leverages giving an 

equal focus to both of them. We present a few examples that clearly indicate how 

this method can be effective to identify outliers and high leverage points when all 

existing diagnostic methods fail to do so.
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