• Title/Summary/Keyword: Stubs

Search Result 139, Processing Time 0.037 seconds

A Study on a New Broadband 180° Phase Shifter using the Network with Great Phase Dispersive Characteristics (강한 위상 산란 특성을 갖는 회로망을 이용한 새로운 광대역 180°위상 천이기에 대한 연구)

  • 엄순영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.401-412
    • /
    • 2003
  • In this paper, a broadband phase shifter structure using a new switched network was proposed. A new reference network is composed of coupled lines and 45$^{\circ}$open and short stubs, which are shunted at the edge points of a main line, respectively, A delay network is composed of only a standard transmission line. It is possible to design a broadband 180$^{\circ}$phase shifter that phase dispersive characteristics by an impedance ratio R of coupled lines and greater phase dispersive characteristics by characteristic impedances Zm, Zs of a main line and stubs are used together. By considering a structure symmetry, the even and odd mode analysis was performed to obtain theoretical S-parameters of the proposed phase shifter. Also, through computer simulation on the basis of derived equations, design graphs were presented to optimally design a 180$^{\circ}$broadband phase shifter. Design graphs provide the values of characteristic impedances Zm, Zs, and I/O match and phase bandwidths. To verify electrical performances of the broadband phase shifter proposed in this paper, low different 180$^{\circ}$phase shifters, operated at the center frequency 3 GHz were designed and fabricated using design graphs, and were experimented. One of them was designed as a standard Schiffman structure to compare with electrical performances. Measured results of each phase shifter to satisfy simultaneously design conditions of I/O match (VSWR=1.15:1) and maximum phase deviation $({\varepsilon}_{{\Delta}{\phi}}={\pm}2^{\circ})$ were well in agreement with corresponding simulation results over impedance match and phase error bandwidths, and showed broadband characteristics.

A Study on New Broadband Phase Shifter using λ/8 Parallel Stubs (λ/8 병렬 스터브들을 이용한 새로운 광대역 위상 천이기에 대한 연구)

  • 엄순영;정영배;전순익;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.657-666
    • /
    • 2002
  • In this paper, a new broadband phase shifter to adjust the slope of dispersive phase characteristic for frequency of transmission network was proposed. The new fundamental network consists of a fixed main line with a length of λ/2 at the center frequency and two double stubs, each with a length of λ/8 at the center frequency, which are open and shorted, respectively, and which are shunted at the edge points of the main line. Characteristic impedances of the main line and two parallel double stubs are adjusted to produce a minimum phase error and to obtain an input and output match at the desired phase shift. Especially, the proposed structure is especially suitable for a broadband phase shifter with large phase shifts more than 90$^{\circ}$, and it is operated in the octave bandwidth. To verify the usefulness of a new broadband phase shifter, each 45$^{\circ}$-, 90$^{\circ}$-, 180$^{\circ}$-bit phase shifter and 3-bit phase shifter(45$^{\circ}$-phase step), which is cascaded in series, operated at the center frequency 3 GHz were designed, fabricated and experimented. The measured results were in very close agreement with the corresponding simulation results over the bandwidth of I/O impedance match and phase error for each phase shift.

Design and Analysis on Compact Antenna for Handsets (핸드폰용 소형안테나의 설계 및 해석)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • In this paper, the compact antenna for handsets is designed using FR-4 substrate for LTE(905-960 MHz), WCDMA(1922.8-2167.2 MHz), DCS(1710.2-1879.8 MHz), US-PCS(1850.2-1989.8 MHz), WLAN(2400-2483 MHz). The CPW line with many advantages and a spiral geometry for miniaturization is proposed. Widths of a spiral line are constant, and three stubs are added to broaden the bandwidth. Lengths and widths of three stubs are gradually changed. And proposed antenna is optimized for VSWR<3, designed, and fabricated. The dimension of this antenna is only $40{\times}30{\times}1mm3$ which is compact. It has been demonstrated by experiment that the compact planar antenna can be used as the mobile communication LTE antenna for 4G.

Low Pass Filter Design using the SRR-DGS Resonator (SRR-DGS 공진기를 이용한 저역통과 필터 설계)

  • Kim, Jong-Hwa;Kim, Gi-Rae;Kim, Sung-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.257-262
    • /
    • 2015
  • In this paper, the split-ring DGS resonator is proposed and its equivalent circuit are analyzed to design the low pass filter. Compared with the conventional dumbell DGS cell, this structure has a flat fluctuation in low frequency range and a sharp slop at edge frequency. The out-band suppression of the SRR-DGS cell can be improved by placing the open stubs on the conductor line which operates as parallel capacitances. Making use of equivalent circuit analytical method, the characteristics of the improved SRR DGS cell are investigated and applied to design compact low pass filter, which has a low in-band loss, sharp slop and high suppression of more than 35dB within a wide out-band frequency range. The dependence of the transmission characteristic on the dimension of a split ring, such as side-length and split-gap, is analyzed in detail. In addition, an improved SRR DGS cell model with open stubs loaded on the conductor line is then presented to improve the out-band suppression. By using the equivalent-circuit analytical method, an S-band microstrip low-pass filter with perfect low-pass characteristic and high out-band suppression is designed and fabricated.

Design of a Broad Band-pass Filter with Stubs for Harmonics Suppression using the FSCS (FSCS를 이용한 고조파가 억제된 광대역 스터브 대역통과 여파기의 설계)

  • Choi, Young-Gu;Kim, Bok-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.103-109
    • /
    • 2008
  • In this papaer, a new type of ${\lambda}_g/4$ short stub band pass filter and ${\lambda}_g/2$ open stub band pass filter are purposed. Both are designed using FSCS technique for harmonic suppression. The proposed filters that used FSCS technique and a broadband stop filter is integrated to band pass filter to suppress the harmonics. The BSF are also placed between stubs so that the size is larger than prevent as compared to conventional one. The propose filters have center frequency of 5.8 GHz, bandwidth of 50% and harmonics suppressin is 120% has in bandwith. The measurement results in the case of ${\lambda}_g/4$ short stub filter, insertion loss of 0.5 dB, return loss of 14 dB are achieved and in the case of ${\lambda}_g/2$ open stub filter, loss of 0.8 dB, return loss of 14.4 dB are achieved. The simulation results and the measurement results are almost the same.

A Study on Isolation Improvement of LTE-PIFA Used Stub Structure on Ground Plane (접지면 위의 스터브를 이용한 LTE-PIFA의 격리도 개선 연구)

  • Park, Chan-Jin;Min, Kyoeng-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.374-383
    • /
    • 2013
  • This paper presents a design for improvement of isolation characteristics by the inserted stub structure on ground plane of a handy terminal which is composed of a main antenna and a sub antenna covered LTE bandwidth. In order to compensate for a resonance length of proposed antenna and to realize a high isolation characteristic, a pair of stub was inserted and located on ground plane that currents from two antennas were converged. A simulated isolation characteristic of antenna without stub at the LTE class 13 band was about -5 dB, but its characteristics of proposed antenna with two stubs at uplink(777~787 MHz) and downlink(746~756 MHz) of the LTE class 13 band were about -12 dB and -15 dB, respectively. An average gain of a fabricated antenna with two stubs was observed about -2 dBi above and it showed good results with comparison of business condition that the average gain of commercial handy terminal has to appear -4 dBi above. The measured S-parameter characteristics and radiation patterns showed a reasonable agreement with the simulation results.

Design and Fabrication of the 94 GHz Branch-line Bandpass Filter using CPW structure (CPW 구조를 이용한 94 GHz Branch-line 대역통과 여파기의 설계 및 제작)

  • Kwon, Hyuk-Ja;Bang, Suk-Ho;Lee, Sang-Jin;Yoon, Jin Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.36-41
    • /
    • 2007
  • We report the 94 GHz CPW branch-line bandpass filter for planar integrated millimeter-wave circuits. The branch-line coupler operates as a transversal filtering section by connecting the coupling ports to the open load stubs and taking the isolation port as the output node. For design of the 94 GHz branch-line bandpass filter, we built the CPW library and optimized the characteristic impedances and the lengths of the branch-line coupler and the open load stubs. The fabricated 94 GHz bandpass filter exhibits an insertion loss of 2.5 dB with an 11.7 % 3 dB relative bandwidth and the return loss is -18.5 dB at a center frequency of 94 GHz.