• Title/Summary/Keyword: Strut-Tie model

Search Result 175, Processing Time 0.021 seconds

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut-and-Tie Model (비선형 스트럿-타이 모델을 이용한 PSC 구조물의 정착부 설계)

  • 배한욱;송하원;변근주;변윤주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.101-107
    • /
    • 1998
  • 본 논문은 비선형 스트럿-타이 모델에 의한 프리스트레스트 콘크리트 정착부의 거동해석 및 설계에 관한 연구이다. 프리스트레스트 콘크리트 구조물의 정착부는 긴장재의 인장력 도입으로 인해 비교적 작은 단면에 큰 집중하중으로 발생하는 매우 중요한 구조부위이며, 기존의설계가 비교적 다른 구조부위의설계에 비하여 경험적으로 이루어지고 있을 뿐 만 아니라 해석에도 많은 시간과 계산량이 소요되는 단점이 있다. 비선형 스트럿-타이 모델을 대상 정착부의 비선형 재료거동을 따르도록 비선형 해석을 실시하여 설계를 수행하고 구조물의 극한하중을 추정하는 방법이다. 본 논문에서는 긴장력이 정착부의 중앙에 도입되는 경우, 편심으로 도입되는 경우, 다중 정착구가 존재하는 경우에 대하여 선형과 비선형 스트럿-타이 모델을 구성하여 정착부의 역학적 거동을 고찰하였고 실험결과와 비교하였다. 비교로부터 비선형 모델을 사용한 경우 선형 모델을 사용한 경우보다 안정성을 유지하면서 경제적인 설계가 가능하고 추정극학강도도 실험결과에 더욱 근접함을 알았다.

Shear Design of Deep Beam with Variable Depth (변단면 깊은 보의 전단설계)

  • Choi, Jeong-Ho;Kim, Tae-Wan;Lee, Seung-Hun;Eom, Jang-Sub;Jin, Chi-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.377-380
    • /
    • 2004
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders. pile caps, foundation walls. and offshore structures. In this paper. the shear behavior and reinforcement effects of simply supported reinforced concrete deep beam with variable depth subject to concentrated loads have been scrutinized using strut-and-tie model to verify the effects of variable depth. The analysis results show that strut-and-tie Model of ACI 318-02 code is very effective method to design of simply supported reinforced concrete deep beam with variable depth.

  • PDF

Strut-and-tie model for shear capacity of corroded reinforced concrete columns

  • Tran, Cao Thanh Ngoc;Nguyen, Xuan Huy;Nguyen, Huy Cuong;Vu, Ngoc Son
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • An analytical model is developed in this paper to predict the shear capacity of reinforced concrete (RC) columns with corroded transverse reinforcements. The shear strength model for corroded RC columns is proposed based on modifying the existing strut-and-tie model, which considers the deformational compatibility between truss and arch mechanisms. The contributions to the shear strength from both truss and arch mechanisms are incorporated in the proposed model. The effects of corrosion level of transverse reinforcements are considered in the proposed model through the minimum residual cross-sectional area of transverse reinforcements and the reduction of concrete compressive strength for the cover area. The shear strengths calculated from the developed model are compared with the experimental results from Vu's study (2017), which consisted of RC columns with corroded transverse reinforcements showing shear failure under the cyclic loading. The comparison results indicate satisfactory correlations. Parametric studies are conducted based on the developed shear strength model to explore the effects of column axial loading, aspect ratios, transverse reinforcements and the corrosion levels in transverse reinforcements to the shear strength of RC columns with corroded transverse reinforcements.

Shear strength prediction of PRC coupling beams with low span-to-depth ratio

  • Tian, Jianbo;Shen, Dandan;Li, Shen;Jian, Zheng;Liu, Yunhe;Ren, Wengeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.757-769
    • /
    • 2019
  • The seismic performance of a coupled shear wall system is governed by the shear resistances of its coupling beams. The plate-reinforced composite (PRC) coupling beam is a newly developed form of coupling beam that exhibits high deformation and energy dissipation capacities. In this study, the shear capacity of plate-reinforced composite coupling beams was investigated. The shear strengths of PRC coupling beams with low span-to-depth ratios were calculated using a softened strut-and-tie model. In addition, a shear mechanical model and calculating method were established in combination with a multi-strip model. Furthermore, a simplified formula was proposed to calculate the shear strengths of PRC coupling beams with low span-to-depth ratios. An analytical model was proposed based on the force mechanism of the composite coupling beam and was proven to exhibit adequate accuracy when compared with the available test results. The comparative results indicated that the new shear model exhibited more reasonable assessment accuracy and higher reliability. This method included a definite mechanical model and reasonably reflected the failure mechanisms of PRC coupling beams with low span-to-depth ratios not exceeding 2.5.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Design of Expansion Segment of Precast Prestressed Concrete Segmental Box Girder bridges Using Strut and Tie Model (스트럿 타이 모델을 이용한 프리캐스터 프리스트레스 콘크리트 세그멘탈 박스 거더 교량의 신축이음 세그멘트이 설계기법 연구)

  • 오병환;이형준;김익현;한승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.268-273
    • /
    • 1995
  • In recent years, precast prestressed concrete segmental box girder bridges have been increasingly constructed Expansion disphragm segment of this type bridge transfers forces from the superstructure onto bearing or column, and plays an important roll of anchorage zone for longitudinal prestressed forces. Non-linear stresses occur inside of diaphragms by these extensive concentrated forces. In this study, the strut-and-tie models are proposed to design an expansion segment rationally. A formula to determine the effective transverse prestressed forces is proposed on the basis of these models. The present study is expected to provide an effective tool to design expansion segment of prestressed concrete bridges rationally.

  • PDF

Practical Application of Strut-and-tie model (스트럿-타이 모델의 실용화)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.979-984
    • /
    • 2008
  • This paper discusses how to use basic strut-and-tie models(STM) for practical application. Construction of STM starts with drawing of load paths with equilibrium conditions. Understanding of structural systems including form active systems, vector active systems, and section active systems help us select appropriate systems for possible STM. Simple circular fans can be employed for load paths from concentrated forces to distributed forces. Strength of struts depends on configuration of their nodal zones which meet tension ties and effective compressive strength. The effective compressive strength of struts are assumed to be mainly influenced by transverse strain.

  • PDF

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.

Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11

  • Panjehpour, Mohammad;Ali, Abang Abdullah Abang;Voo, Yen Lei;Aznieta, Farah Nora
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.135-147
    • /
    • 2014
  • Strut-and-tie model (STM) has been recommended by many codes and standards as a rational model for discontinuity regions in structural members. STM has been adopted in ACI building code for analysis of reinforced concrete (RC) deep beams since 2002. However, STM recommended by ACI 318-11 is only applicable for analysis of ordinary RC deep beams. This paper aims to develop the STM for CFRP strengthened RC deep beams through the strut effectiveness factor recommended by ACI 318-11. Two sets of RC deep beams were cast and tested in this research. Each set consisted of six simply-supported specimens loaded in four-point bending. The first set had no CFRP strengthening while the second was strengthened by means of CFRP sheets using two-side wet lay-up system. Each set consisted of six RC deep beams with shear span to effective depth ratio of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00.The value of strut effectiveness factor recommended by ACI 318-11 is modified using a proposed empirical relationship in this research. The empirical relationship is established based on shear span to effective depth ratio.