• Title/Summary/Keyword: Strut-Tie model

Search Result 175, Processing Time 0.025 seconds

Nonlinear finite element analysis of four-pile caps supporting columns subjected to generic loading

  • de Souza, Rafael Alves;Kuchma, Daniel Alexander;Park, Jung-Woong;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.363-376
    • /
    • 2007
  • The paper presents the development of an adaptable strut-and-tie model that can be applied to the design or analysis of four-pile caps that support axial compression and biaxial flexure from a supported rectangular column. Due to an absence of relevant test data, the model is validated using nonlinear finite element analyses (NLFEA). The results indicate that the use of the proposed model would lead to safe and economical designs. The proposed model can be easily extended to any number of piles, providing a rational procedure for the design of wide range of pile caps.

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

Comparison and Evaluation of Current Strut-and-Tie Design Provisions for Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 현행 스트럿-타이 설계기준에 대한 비교 및 평가)

  • Kim, Jin Woo;Hong, Sung-Gul;Lee, Young Hak;Kim, Heecheul;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • The current American Concrete Institute(ACI), Canadian Standard Associate(CSA) and CEB-FIP Model Code 2010 provisions on the shear strength of a simply supported deep beam suggest that deep beams should be designed using the strut-and-tie model. Although this is a useful methodology to design members in disturbed regions, the quality of the design is highly dependent on the truss model that designers create. However, Hong et al. derived the shear strength equations of reinforced concrete deep beams. This thesis investigates the validity of the current ACI, CSA and CEB-FIP code provisions on the shear strength of simply supported reinforced concrete deep beams by comparing them with the shear strength equations proposed by Hong et al. The comparison shows that all of these code provisions provide reasonable estimates on the shear strength of concrete deep beam members and the selection of an internal truss model plays an important role on the estimation of shear strength.

Analysis of PSC Box Girder Railway Bridge and Design of its Diaphragm using Sturt-and-Tie Model (PSC 박스 거더 철도교량의 해석 및 스트럿-타이 모델에 의한 격벽부 설계)

  • Song, Ha-Won;Kim, Hyoung-Woon;Kim, Young-Hoon;Byun, Keun-Joo
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.30-39
    • /
    • 1998
  • The functions of diaphragms at abutments and piers of PSC box girder railway bridge are to transfer forces from the superstructure onto bearings or columns and to stiffen the superstructure cross-section against in -plane deformation. Due to stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than those for other structural members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from that of the deck slab obtained from two dimensional analysis of the bridge, which is basis for the design of deck slab. In this paper, three dimensional behavior of deck slab near the diaphragm of prestressed concrete (PSC) box girder railway bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling and using the strut-and-tie model design of the diaphragm are presented. The modeling techniques used in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측)

  • Park, Jung Woong;Kim, Tae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.841-848
    • /
    • 2006
  • There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

Improvement of Constructability of Coping by Reduction of Reinforcement Amount (철근량 저감을 통한 코핑부 시공성 향상)

  • Park, Bong-Sik;Park, Sung-Hyun;Cho, Jae-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1577-1582
    • /
    • 2011
  • Recently rapid construction of bridge is a main interest in construction. A research on rapid construction of pier coping is urgently needed because pier, which is a bridge understructure, directly affect lane reduction and increase of social cost. Precast assembly method and pre-assembly method are the main subjects of rapid construction. But these researches have focused not on reduction of reinforcement amount, but on modifying production method of coping. Reinforcement amount of design specification is as much as that of coping under constructing. So different approach is needed for reduction of reinforcement amount. In this paper, design of pier coping using strut-tie model was proposed for reduction of reinforcement amount and improvement of constructability. Railway bridge pier coping under constructing was analyzed using a finite element method and designed using strut-tie model.

  • PDF

Direct Nonlinear Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비선형 스트럿-타이 모델)

  • 김윤곤;엄태성;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.384-387
    • /
    • 2003
  • A new Direct Nonlinear Strut-Tie Model design method performing iterative calculations using secant stiffness was developed. Since basically the proposed design method uses elastic analysis, it has the advantages of convenience and stability in numerical analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it analyzes the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer, such as ductility limit on each member. Through iterative calculations on the structure preliminary designed with member sizes, the strength and ductility demands of each member can be estimated so that they satisfy the given design strategy, and as the result economical and safe design is achieved.

  • PDF

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

3-D Behavior and Strut-and-Tie Model Analysis of Diaphragm in PSC Train Bridge (PSC철도교량 격벽부의 3차원 거동 및 스트럿-타이 모델 해석)

  • 송하원;변근주;김형운;김영훈
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.564-571
    • /
    • 1998
  • The function of diaphragms at abutments and piers of prestressed concrete (PSC) box girder train bridge is to transfer forces from the superstructure onto bearings or column and to stiffen the superstructure cross-section against in-plane deformation. Due to large stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than designs for other structual members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from behavior of the deck slab obtained from two dimensional analysis of the bridge, which is basis far the design of deck slab. In this paper, three dimensional behavior of deck slab near diaphragm of PSC box girder train bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling. Then, strut-and-tie model is applied to design the diaphragm of PSC box girder train bridge. The modeling techniques in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF