• Title/Summary/Keyword: Structured water

Search Result 197, Processing Time 0.024 seconds

STORAGE OF BROCCOLI BY MAKING THE WATER STRUCTURED -Suppression of metabolism-

  • Oshita, S.;Seo, Y.;Kawagoe, Y.;Rahman, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.918-925
    • /
    • 1996
  • The effect of structured water by dissolution of xenon was examined from the view point of the suppression of both browning and respiratory metabolism of broccoli. The structured water is formed duet to hydrophobic interaction when xenon gas dissolves into water. NMR measurements were carried out to determine proton spin-spin relaxation time, T2, for water. There was a difference in proton T2 between distilled water and structured water. This can be interpreted as the change of water structure. Fro the broccoli cut in half stored for 16 days at 279K, the section color did not change appreciably for the sample whose water was structured by dissolution of xenon whose initial partial pressure was 0.39MPa. In contrast to this, the browning of section surface was observed for the sample stored under the condition of nitrogen gas at the same partial pressure as xenon and for the sample stored under atmospheric condition . These results led to the conclusion that the suppression of b owning by oxidation was due to structured water but not to applied pressure. Adding to this, the water structured by xenon has resulted in suppression of respiratory metabolism of broccoli.

  • PDF

Design of Structured Surfaces for Directional Mobility of Droplets

  • Osada, Takehito;Kaneko, Arata;Moronuki, Nobuyuki;Kawaguchi, Tomoyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.13-17
    • /
    • 2008
  • This paper deals with the directional mobility of droplets on structured surfaces. Structured surfaces were micro-patterned with rectangular lines and spaces of varying pitch and height in the sub-millimeter range. The material used was polydimethylsiloxane, which is hydrophobic and wettable by oil. First, we studied the effect of the structural design on the sliding angle of pure water or oil through experiments. For pure water droplets, we found that a wider pitch enhanced the directionality. On the other hand, oil droplets spread along the groove because of their low surface tension and strong capillary force. The directionality of the sliding angle of oil droplets was larger than that of pure water, especially when the groove was narrower and deeper. Second, we poured a large amount of liquid on the structure and evaluated the removal rate on the tilted surface. We found that a parallel structure enhanced the liquid mobility for both pure water and oil.

A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics (분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구)

  • Lee, Kwang Ho;Kwon, Tae Woo;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

Advanced Nano-Structured Materials for Photocatalytic Water Splitting

  • Chandrasekaran, Sundaram;Chung, Jin Suk;Kim, Eui Jung;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The production of oxygen and hydrogen from solar water splitting has been considered to be an ultimate solution for energy and environmental issues, and over the past few years, nano-sized semiconducting metal oxides alone and with graphene have been shown to have great promise for use in photocatalytic water splitting. It is challenging to find ideal materials for photoelectrochemical water splitting, and these have limited commercial applicability due to critical factors, including their physico-chemical properties, the rate of charge-carrier recombination and limited light absorption. This review article discusses these main features, and recent research progress and major factors affect the performance of the water splitting reaction. The mechanism behind these interactions in transition metal oxides and graphene based nano-structured semiconductors upon illumination has been discussed in detail, and such characteristics are relevant to the design of materials with a superior photocatalytic response towards UV and visible light.

An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea - (하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Water Purification and Ecological Restoration Effects of the Keumeo Stream Sustainable Structured wetland Biotop (SSB) System Established on the Floodplain of Kyungan Stream (경안천 고수부지에 조성한 금어천 생태적수질정화비오톱 시스템의 수질정화 및 생태복원 효과)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.23-35
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was constructed on the floodplain of Kyungan stream in December, 2006. It purifies polluted water of Keumeo stream which flows into the stream. Water were sampled once a month at inlet and outlet from December, 2007 to December, 2008. $BOD_5$, SS, T-N and T-P were analyzed. Plant and fish species of the system were monitored twice during the period. Average influent and effluent BOD5 concentration was 6.2 and 2.2 mg/L, respectively and BOD5 removal was 50.8%. SS concentration of influent and effluent was averaged 10.1mg/L and 1.5mg/L, respectively and SS abatement amounted to 77.0%. Average influent and effluent T-N concentration was 4.9mg/L and 2.9 mg/L, respectively and T-N retention was 50.8%. T-P concentration of influent and effluent was averaged 0.386mg/L and 0.107mg/L, respectively and T-P removal amounted to 77.0%. Twenty two plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. Dominant plant species were in the following order; Phragmites communis > Typha latifolia > Iris pseudoacorus > Persicaria thunbergii. Five families and 15 species of fish were observed in the system including Chinese minnow (Moroco oxycephalus) which inhabits in clean water. Six more fish species were monitored in the system compared with ones living in Kyungan stream. Amphibia and reptiles accounted for 11 species of 4 orders and 7 families including Korean Salamander (Hynobius leechi) which also lives in cleanwater.

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

The Influence of Steepness and Natural Mortality Rate on the MSY Calculation in an Age-structured Model (연령구조평가모델 하의 MSY 계산에서 Steepness와 자연사망률의 영향 분석)

  • Jung Hyun Yoon;Jinwoo Gim;Heejung Kang;Saang-Yoon Hyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.292-301
    • /
    • 2024
  • It is challenging to simultaneously estimate parameters in a stock-recruitment relationship, steepness, and natural mortality rate with the other parameters within an age-structured assessment model even in a data-rich situation. Such a problem leads to uncertainty in estimates of management references such as maximum sustainable yield (MSY), which are affected by those components. The objective of this study was to evaluate the effects of those parameters on MSY by analyzing the process of estimating the MSY. For illustration, we used two data sets: The chub mackerel Scomber japonicus in the Korean waters and the yellowtail flounder Limanda ferruginea in the Southern New England-Mid Atlantic. As a result, the natural mortality rate influenced spawning stock biomass per recruit, yield per recruit, and MSY, while steepness affected MSY. A sensitivity analysis enabled us to estimate the natural mortality rate and steepness. The optimal set of steepness and natural mortality was 1.0 and 0.37 per year for the chub mackerel, and 0.35, and 0.8 per year for the yellowtail flounder, respectively.