• 제목/요약/키워드: Structured light-based scanners

검색결과 4건 처리시간 0.022초

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

Development of Structured Light 3D Scanner Based on Image Processing

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.49-58
    • /
    • 2019
  • 3D scanners are needed in various fields, and their usage range is greatly expanded. In particular, it is being used to reduce costs at various stages during product development and production. Now, the importance of quality inspection in the manufacturing industry is increasing. Structured optical system applied in this study is suitable for measuring high precision of mold, press work, precision products, etc. and economical and effective 3D scanning system for measuring inspection in manufacturing industry can be implemented. We developed Structured light 3D scanner which can measure high precision by using Digital Light Processing (DLP) projector and camera. In this paper, 3D image scanner based on structured optical system can realize 3D scanning system economically and effectively when measuring inspection in the manufacturing industry.

3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템 (Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning)

  • 박상욱;맹희영;이명상;권길선;나미선
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.1029-1036
    • /
    • 2014
  • 3D 스캐닝을 이용한 3D 형상정보를 구축하기 위해서는 피측정물의 촬영부터 시작하여 획득된 데이터의 합성과정까지 여러 단계를 거치는데, 이는 많은 시간과 복잡하며 번거로운 수작업을 요구한다. 본 연구에서는 복잡하고 많은 시간이 소요되는 과정에서 생기는 불필요한 준비과정이나 진행단계별 수작업 요소들을 자동화하여 작업자의 숙련도에 따라 발생하는 데이터 품질의 차이를 최소화 할 수 있도록 하였으며, 작업자의 실수로 인해 발생하는 데이터의 부재를 사전에 예방 할 수 있어 결과적으로 3D 스캐너를 통한 3 차원데이터 획득과정의 시간적, 데이터적 효율성과 형상정밀도를 증가시킴을 증명하였다.

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • 대한치과교정학회지
    • /
    • 제45권3호
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.