• 제목/요약/키워드: Structure-borne Sound

검색결과 95건 처리시간 0.022초

주변고정 장방형 평판에 있어서 임의점 가진에 의한 고체전파음의 예측 (An estimate of structure-borne sound by the excitation at an arbitrary point on the rectangular plate with fixed edges)

  • 김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.21-34
    • /
    • 1988
  • Machinery enclosures are widely adopted to reduce the noise emission in various fields of application. Emitted noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound with different path of propagation. One is the "structure-borne sound", while the other is "air-borne sound". In order to get a most efficient machinery enclouser a prudent consideration upon the above structure-borne and air-borne sound is required, as the guiding principle of contermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subjects for the structure-borne sound, and the specifications of absorbing members and damping panels are the major related matters for the air-borne sound. Hence, it seems very efficient to separate the total sounds into two categories with a great accuracy when one think of further reduction of noise from the existing enclosure, although its separating methods have not been made clear for many years. Author proposes an application method of experimental modal analysis to extract the structure-borne sound from the measured total radiation sound, as the air-borne sound is deduced by the vectorial difference between the measured total radiation sound and the calculated structure-borne sound. In order to calculate the correct structure-borne sound by the excitation at an arbitrary point on the enclosure structure, it is important to decide 1) how to estimate the enclosure's surface vibration velocity and 2) how to compute the radiation sound which is considered as the effect of vibration modes of enclosure surface. The former can be solved with total frequency response function calculated by the application of experimental modal analysis. The latter is to be solved by the author's new approaches for radiation sound computation by means of the Rayleigh's integral equation and the boundary-element method applied complex surface vibration velocity. As a first step, structure-borne sound by the excitation at an arbitry point on the rectangular plate with fixed edges, has been calculated to verified the reliability of the developed computation methods. The results of calculation show good agreements with those of the actual measurements.actual measurements.

  • PDF

차음구조물의 방사음향파워로부터 고체 및 공기전파음향파워의 정량적인 분리법 (A Quantitative Separation Method of Structure and Air Borne Sound Power from the Enclosure)

  • 김의간;강동림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.85-96
    • /
    • 1992
  • Engine enclosures are widely adopted to reduce the noise emission in various fields of application. The radiated noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound power with different path of propagation. One is the 'structure-borne sound power' which stems from the engine's vibratory force applied to the structure of enclosure through the mounting parts of engine etc., while the other is the 'air-borne sound power' which is originated by the sound power radiated from the engine surface to the inner space of enclosure that should excite the vibration of enclosure from inside. In order to get a most efficient engine enclosure is required a profound consideration upon the above structure-borne and air-borne noise, since the guiding principle of countermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subject for the structure-borne sound power and the specifications of absorbing member and damping panels are the major interests for the air-borne sound power. Hence it seems very efficient to separate the total sound power into two categories with a great accuracy when one think of further reduction of engine noise from the exciting enclosure, however, its separating methods have not been made clear for many years. Then author proposes a new practical separation method of two propagation path's contribution to the total radiation sound power for the enclosure under the engine operating condition.

  • PDF

제진도료가 전동차 실내소음에 미치는 영향에 관한 연구 (Study on the Effect of the Sound-Deadening Paint on the Inside Running Noise in Railway Vehicles)

  • 우관제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.702-706
    • /
    • 2009
  • Internal running noise of a vehicle running in open field is the summation of air borne noise and structure-borne noise. In this paper vibration damping characteristics of carbody are investigated to see the effect of sound-deadening paint on the internal running noise. By using SEA method, vibration levels of complete train with and without sound-deadening paint are estimated and structure borne noise levels are estimated.

  • PDF

고가철교 방음터널 효과검증 (The Verification on Effect of Sound Absorption Tunnel for Elevated Railway)

  • 김형두
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

철골조 공동주택의 차음성능 실태조사에 관한 연구 (I) (A Study on the Sound Insulation Performance of Steel-Structured Apartment Buildings (I))

  • 차상곤;이상우;정병욱;정대업;이수열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.151-156
    • /
    • 2000
  • The sound insulation performance of walls and floors for air-borne and structure-borne sounds in an apartment building is an important environmental factor which should be contemplated at the intial design stage for their thorough control. Recent increasing residents' demands for quality living spaces strongly urge the development of more accurate and efficient measurement and evaluation methods for the control of air-borne and structure-borne sound insulation. However, steel-structured apartment buildings, recently emerged as new building structures in the market, have not been thoroughly examined. The present work carried out an extensive survey for steel-structured apartment buildings, in an attempt to provide useful design data, and their sound insulation performances were compared with those of R.C. apartment buildings.

  • PDF

고속 CD-ROM Drive의 구조 및 음장 해석 (Structural and Sound Field Analysis of the High Speed CD-ROM Disk Drive)

  • 임웅섭;차성운;이재승;문용락
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.210-215
    • /
    • 2001
  • CD-ROM Drives Rotating high speed as 10000 rpm cause serious noise and vibration problems. At the high speed, dominant noise is Air Borne Noise produced from high-speed airflow and Structure Borne Noise produced from structural vibration. In this research, vibration and sound characteristics in CD-ROM Drive were studied by the use of experimental analysis and computational simulation. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are applied to identify the acoustic noise source of CD-ROM drive. And Computational simulation using SYSNOISE is conducted for describing the noise behavior.

  • PDF

SEA법에 의한 선박고체소음의 전파경로에 대한 해석적 연구 (A Study on the Transmission Path of Shipboard Structure-Borne Noise-Using SAE)

  • 현명환;김사수
    • 소음진동
    • /
    • 제6권5호
    • /
    • pp.575-585
    • /
    • 1996
  • In order to build a quiet and comfortable ship, the noise levels on board ship must be predicted at early design stage. Statistical Energy Analysis (SEA) developed by R. H. Lyon has been well known to be the most useful frame work to study the energy flow of noise and vibration in structure. This paper applied this theory to predict the transmission loss of structure-borne noise of model structure and has developed computer program. Components constructions model structure have been all considered as SEA elements. And we also estimated the SEA parameters from the model structure. Using SEA and a new conception of STL, we found the transimission character of structure-borne noise theoretically by the idealized ship model, and then compared the results with three cases.

  • PDF

고무마운트를 통한 장비의 고체음 전달에 관한 연구 (Study on the Structure-borne Sound Transmission of a Machine through Rubber Mounts)

  • 김봉기;김재승;김현실;강현주;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.655-660
    • /
    • 2000
  • Machines on board a ship are mounted on decks and transmit its structure-borne sound to the deck through resilient mounts. To predict the ship noise generated by the structure-borne sound of the machine, It is necessary to estimate the vibration level of the base structure. In this paper, a simple dynamic model is considered for vibration isolation systems consisting of a source, an isolator, and a base structure. The high frequency mobilities of the simple base structure are reviewed and wave effects in the mount are discussed in relation to isolation performance.

  • PDF

시험에 의한 대시시스템의 소음특성 규명 및 시뮬레이션 신뢰성 연구 (Experimental study and numerical simulation on a dash system for noise reduction of a sedan vehicle)

  • 유지우;채기상;조진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.667-671
    • /
    • 2012
  • Low frequency noises (up to about 200 Hz) mainly occur due to particular modes, resulting in booming noises, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~ 1 kHz, as the number of modes rapidly increase, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated. Energy Transmission loss (i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transfers both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet or sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

  • PDF

승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구 (Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction)

  • 유지우;채기상;조진호
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.