• Title/Summary/Keyword: Structure-Borne Noise

Search Result 238, Processing Time 0.024 seconds

Prediction of The Rail way Track's Vibration Behavior and Corresponding Experimental Verification (철도궤도의 동적특성 예측 및 실험적 검증 연구)

  • Park, Hee-Jun;Kim, Kwan-Ju;Kim, Jea-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.883-888
    • /
    • 2004
  • One of commercial rapid transits produces peculiar booming sound when passing through the slab-track tunnel. In order to analyze that tympanic membrane-pressing noise systematically, typical source-transfer path-response analysis was carried out. Considering the octave band of booming noise, work scope was confined to structure-borne noise analysis, especially the dynamic behaviour of railway tracks. Experimental modal analysis of railway tracks, composed of rail, rubber pad, sleeper, ballast, and ground were performed. The results shows that transversal bending modes of the rail are suspicious for the cause of the low band booming noise. Finite element analysis are made use of to match preceding experimental results, and plausible dynamic properties of track components are produced.

  • PDF

Damping Characterization of the Double-skin Aluminum Extruded Panels for Rolling Stock Carbody (철도차량 차체용 더블 스킨 알루미늄 압출 패널의 감쇠특성)

  • Kang, Gil-Hyun;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3197-3202
    • /
    • 2013
  • When car builder designs the large carbody structure of railway vehicles, it is necessary to optimize the damping characteristics through the analysis of structure borne noise such as sound pressure level(SPL). This paper is a study on the structure borne noise analysis by characterizing the damping of double skin aluminum extruded panels for rolling stock carbody. The normalized SPL was calculated based on the simple source theory using measured mechanical mobility parameters from vibration tests(i.e. point, transfer and modal mobility). The reduced SPL was predicted by using finite element method by applying loss factor of damping material into laminated shell elements. It was found out that the damping material coated on the panels like underframe, which part is seriously affected by vibration during train run, took effect to reduce noise level.

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

Structural Modification for Vehicle Interior Noise Reduction Using Vibration Response Sensitivity Analysis

  • Park, Yong-Hwa;Cheung, Wan-Sup;Park, Youn-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.3-11
    • /
    • 2000
  • A structural modification technique for reducing structure-borne noise of vehicles using a sensitivity analysis is suggested. To estimate the noises generated by the vibration response, a semi structure-acoustic coupling analysis was exploited. As a result of the coupling analysis, severe noise generating positions are identified whose vibrations should be cured through structural modifications. Formulation for the sensitivity analysis of those severe vibration responses with respect to the design changes is derived to enhance the vibration response. Special attention is given in this paper to the use of the experimentally measured vibration responses in the sensitivity analysis. As a result of the proposed method, the structural modifications can be peformed accurately by using experimental data instead of using the finite element method though the higher vibration modes are considered as long as the vibration measurement and acoustic mode calculations are accurate. Effectiveness of this method was examined using an example model by experiments.

  • PDF

Noise and Vibration Reduction of Double-Resiliently Mounted Pump-like Machinery (이중탄성지지된 펌프류 장비의 소음.진동 저감)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.124-127
    • /
    • 2006
  • In this paper, noise and vibration reduction of double-resiliently mounted pump-like machinery is studied. SBN(Structure-borne noise) reduction through upper and lower mount is analyzed by assuming that the system is modeled as a mass-spring system. In addition, the impedance of the floor is included in the prediction. The comparison of the SBN difference through upper mount show that the effect of impedance is negligible, while the measurement differs significantly from the prediction for high frequency range. It is found that the assumption of point mass-spring system leads to the disagreement between prediction and measurements.

  • PDF

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

Study on Noise Reduction of an Axial Fan for Refrigerator through Modification of the Blade Tip (깃 끝단 개선을 통한 냉장고용 축류홴 저소음화에 대한 연구)

  • 김창준;전완호;정용규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.639-644
    • /
    • 2002
  • In this paper, a successful noise reduction of an axial flow fan for a refrigerator is presented. The vortex sheet generated at the blade tip of fan was suppressed by changing the shape of the tip. The structure of vortex sheet and detailed flow pattern around the fan were studied by two-dimensional LDV(Laser-Doppler Velocimetry). Effective ways to work out the result as mentioned above are to make the tip of the blade varied in thickness and to have elliptical shapes. To seek the optimal value fur the shape of new fan, several cases were examined. Through the application of the methods, the refrigerator became less noisy by 3.8 dB(A) in terms of air-borne noise produced only by the axial flow fan compared to the current one.

  • PDF

A Method to determine structureborne noise levels from machineries (고체음원의 출력 예측방법에 대한 연구)

  • 김상렬;김재승;김현실;강현주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.545-550
    • /
    • 1997
  • It is well known that Statistical Energy Analysis(SEA) is one of very attractive analytical methods to solve shipboard noise problems. With reasonable successes, many applications of SEA to shipboard noise prediction have been reported. However when one wishes to obtain theoretical predictions by using SEA in practical systems, he will find difficulty in modeling of source systems, that is, foundations where to place main engine, generator, compressor, and so on. Also, he will find that it is hard to determine the amount of power flow from machinery to structures. In this paper, SEA of a simple foundation model was carried out using the estimated amount of power flow from source; the estimated mobility method. The comparison between the estimated and measured results is presented. That comparison shows a method to get structure-borne noise power from the combination of machinery and foundation. This prediction method gave a good results for a air-compressor mounted on a model foundation. The method is expected to give a reasonable power output in practical problems.

  • PDF

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

Vibration Reduction Using Wire Mounting - Test Results (Wire Mounting을 이용한 진동저감에 대한 실험 연구)

  • 최상현;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.403-408
    • /
    • 2001
  • Structure-borne noise and vibration is one of the main complaints of home appliances such as refrigerators, washing machines, air conditioners, etc. There have been many efforts to reduce the emitting noise and vibration. Mostly the efforts have been concentrated to optimize the mounts shape and its material properties realizing that the vibration power is mainly transmitted to the structure via mounts. It is known that softer mounts have the better vibration isolation effect. But mounts have another important function in addition to the vibration isolation. That is to support the motor and compressor safely. Thus mounts should be stiff enough to resist the supporting items. But the two properties, stiff and soft, are contradict each other. So the designer should compromise the two complicity properties properly in between. Noticing that, motors and compressors themselves are very quite until they are connected to the base structure via mounts, wire connecting idea was proposed in this work. Instead of using conventional mounts, as shown in Fig 4, compressor was mounted using six wires as shown in Fig 5. Since wire is very flexible in bending but stiff in tension, we can realize the ideal mount design requirements, stiff enough to support and soft enough to isolate vibration power. The suggesting idea was tested with an air conditioner outdoor unit.

  • PDF