• Title/Summary/Keyword: Structure stability

Search Result 4,037, Processing Time 0.031 seconds

A Study on Early Strength Estimation of Precast Concrete joint Mortar with Microwave (마이크로파에 의한 PC접합모르타르의 조기강도추정에 관한 연구)

  • 원준연;박일용;백민수;이종균;안형준;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.217-222
    • /
    • 2000
  • A large Pc structure building is system that consisted of bearing wall and slab joint. It has general structure stability from unity thar each members tied at joint. The strength of mortar that packing in joint among panels is important to internal force in entire building system. Do, if we could get early strength estimation with microwave. It would bring good construction planning, reduce construction time, and judge building stability and so on. The purpose of this study is to develop early estimation method for making better quality control and constructing good PC panel structure. The results of this study were as follows :1) With sealed molds, reduced moisture volatilization to more than 60% and enlarged 30% accelerated compressive strength than before one. 2) To get more accelerated strength, we should control maximum temperature difference to $30^{\circ}C$ downward 3)Interrelation with 7-day and 28-day strength were 0.831,0.902, and it is above than before one

  • PDF

Ab-initio calculation on Co substitution into NiSi (NiSi에의 Co 치환에 대한 ab-initio 계산)

  • Kim, Yeong-Cheol;Seo, Hwa-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.358-360
    • /
    • 2007
  • Cobalt subtitution on NiSi is investigated by using an ab-initio calculation. Firstly, a relaxed NiSi structure is calculated and the calculated lattice parameters are compared with experimentally determined lattice parameters. The calculated values are smaller than the experimental values by about 2%. As the calculation is based on 0 K, and the experimental measurement is performed at room temperature, those values are in good agreement. Next, a Co atom substitutes a Ni and Si site, respectively, to evaluate the preferable site between them. Co prefers Ni site to Si site. The calculated total energy also indicates that the Co substitution to Ni site stabilizes the NiSi structure. Therefore, the thermal stability of NiSi with Co addition can be achieved by the structure stabilization of NiSi by Co substitution into Ni site of NiSi.

Influence of Polycondensation Type on Structure of Resorcinol Formaldehyde Resin Studied by Molecular Simulation

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 2000
  • Resorcinol formaldehyde resins are synthesized by polycondensation of resorcinol with formal-dehyde and have various structures by the condensation type. The influence of polycondensation type on the stability and structure of the resorcinol formaldehyde resin was studied by molecular mechanics and molecular dynamics. The resins formed by 2,6-polycondensation and 4,6-polycondensationwith head-to-tail orientations have structures of intramolecular hydrogen bonds between 1-hydroxyl groups and between outer hydroxyl groups of the adjacent resorcinols, respectively. The resin formed by 2,6-polycon-densation with head-to-head orientation has a structure that inner hydroxyl groups cluster in the center of the molecule. Energetical stability of the resin is affected by both the intramolecular hydrogen bonds and the steric' hindrance by phenyl group.

  • PDF

Thermal Stability of Lamellar Eutectic Structure in Fe-Ti Alloy (Fe-Ti합금계에서의 충상공정조직의 열적안정성)

  • Wey, Myeong Yong;Hasebe, Mitsuhiro
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.121-127
    • /
    • 1997
  • In order to elucidate thermal stability of Fe-$Fe_2Ti$ eutectic structure, the initial several structures have been investigated in the changes of coarsening and spheroidization during prolonged annealing under the eutectic temperature. The results are as follows: 1) The rate constant of coarsening and spheroidization was formulated as $S^{-n}-S_0^{-n}=k{\cdot}t$, where S is the total area of the interface between ${\alpha}$ and C($Fe_2Ti$) per unit volume, $S_0$ is initial value and k is the rate constant. 2) The coarsening and spheroidization mechanism was described by Ostwald ripening and controlled by diffusion of Ti-atom in ${\alpha}$-phase. 3) The spheroidization rate constant in eutectic lamellar structures was depended upon annealing temperature and showed the Arrhenius relation. The activation energy for spheroidization of lamellar structure was 365 kJ/mole.

  • PDF

Experimental Study on Drag Reduction of Ground Vehicle Using a Rear-Spoiler (Rear-spoiler를 이용한 자동차의 항력감소에 관한 실험적 연구)

  • 최재호;이상준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.31-39
    • /
    • 1996
  • The effect of rear-spoiler attached at rear end of automobile trunk on the aerodynamic characteristics of a MIRA reference car model was experimentally investigated. For different shapes and positions(G/H) of the rear-spoiler, the aerodynamic forces on the automobile were measured at various flow speed(ReL). The effect of rear-spoiler on the wake structure behind the automobile was also investigated using flow visualization and hot-wire anemometer. The rear-spoiler modifies the near wake structure and decreases aerodynamic drag and increases driving stability compared with those of the conventional automobile without rear-spoiler. From the experimental results, rear-spoiler of airfoil shape installed at the position of G/H=0.084 shows the best aerodynamic performance.

  • PDF

Structural Stability and the Electronic Structure of InP/GaP Superlattices

  • Park, Cheol-Hong;Chang, Kee-Joo
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.25-34
    • /
    • 1991
  • The stability and the electronic structure of $In_0.5$.$Ga_0.5$P-based superlattices are examined through self-consistent ab initio pseudopotential calculations. A chalcopyrite-like structure is found to be the lowest energy state over (001) and (111) monolayer superlattices (MLS). Our calculations indicate that all the ordered structures in bulk form are unstable against phase segregation into binary constituents at T = 0 while for epitaxial growth, the chalcopyrite phase is stabilized. The fundamental band gaps of the ordered structures are found to be direct and smaller than that of disordered alloys. The lowering of the band gap is explainable by band folding and pushing effects. We find the reduction of the band gap to be largest for the (111) MLS.

  • PDF

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.

Design Alterations of a Machine Structure for the Improved Washing Quality (세척 공정 품질 향상을 위한 장비 구조 개선)

  • Nam, Gyu Dong;Han, Dae Seong;Yi, Il Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.88-92
    • /
    • 2019
  • Automotive industry requires high technologies to stabilize apparatuses for the EGR valve manufacturing. Vibrations of washing machine are one of the most critical factors for causing unwashed products, which are the main reasons of the defects.In this study, the structure of the washing machine was analyzed through the experiment and the computer simulation to investigate the main reasons of the vibrations, and further to alter the design for the improved stability. And the design alterations were applied to the machine to identify the effects of those alterations.The result of the study shows that design alterations of the washing machine can effectively suppress about 85% of the vibrations, and further can minimize the unwashed EGR valve.

A Study on the Position-Synchronous Control of Coupling Structure by H Approach (H제어기법에 의한 커플링구조의 위치동기제어에 관한 연구)

  • Byun, Jung-Hoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2052-2059
    • /
    • 2002
  • In this study, a synchronous controller algorithm being applicable to two-axis position synchronzation is developed. Based on coupling structure, the synchronous control system is composed of speed and synchronous controllers. The speed controller is designed to follow a speed reference. In addition, the synchronous controller is designed from the viewpoint of accurate synchronization and robust stability in H$\infty$ synthesis. Finally, the effectiveness of the presented controller is demonstrated through extensive experiments.

An Evaluation of Pneumatic Conveyor Equipment Stability Through Fluid Structure Interface Analysis (FSI 해석을 통한 공기압 컨베이어 장치의 안전성 평가)

  • Kim, Chan-Woo;Yoo, Ji-In;Roh, Hyun-Woo;Choi, Sung-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.94-99
    • /
    • 2019
  • To evaluate the stability of a pneumatic conveyor system, a flow analysis and structural analysis were performed using the FSI technique. Prototypes were fabricated and verified. As a result of the flow analysis, the maximum pressure applied to the device was calculated to be 0.55 MPa. The structural analysis determined that the maximum stress was 131 MPa and the yield strength of the structure was less than 205 MPa. The safety of the system was confirmed by the fact that no deformation occurred during the manufacturing and operation of the prototype.