• 제목/요약/키워드: Structure stability

검색결과 4,037건 처리시간 0.031초

SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구 (A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI)

  • 유광호;김영진
    • 한국터널지하공간학회 논문집
    • /
    • 제20권1호
    • /
    • pp.23-38
    • /
    • 2018
  • 현재까지 대부분의 내진해석 연구는 지상과 지하구조물을 개별적으로 분석하는 데 제한되어왔기 때문에 그 상호거동이 효과적으로 분석되지 못했다. 따라서 본 연구에서는 기반암과 표층으로 이루어진 지반에 건물과 인접지하구조물이 설치되는 복합지하시설물을 대상으로 지반과 구조물을 동시에 고려한 동적해석(SSI)을 수행하였다. 내진안정성이 층간변위비와 구조부재의 휨응력에 근거하여 분석되었다. 그 결과, 초고층건물이 저층건물보다 인접지하구조물의 영향을 더 많이 받지만, 지상구조물은 내진안정성이 양호한 것으로 나타났다. 반면, 건물의 지하부와 인접지하구조물에서 발생한 휨인장응력이 허용값을 초과하여 지상부보다는 지하구조물이 더 취약할 수 있다고 나타났다. 따라서 대도시에서의 건물은 주변에 다양한 구조물이 존재하기 때문에 내진해석 시 지상 및 지하구조물을 동시에 고려해야 상호거동을 정확히 예측할 수 있다고 판단된다.

소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구 (A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle)

  • 공창덕;박현범;김주일;강국진;박미영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

지진 모형시험을 통한 농업용 저수지 거동 평가 (Evaluation of Agricultural Reservoir Behavior by Seismic Shaking Table Test)

  • 임성윤;송창섭;김명환
    • 한국농공학회논문집
    • /
    • 제57권3호
    • /
    • pp.55-63
    • /
    • 2015
  • Embankment of agricultural reservoir started by four major rivers project. Most agricultural reservoirs must insure the agricultural water, they need must be ensured stability of embankment. Recently, there is a growing interest in seismic stability of structure by earthquake. Results of evaluation of the structural stability through seismic vibration test and numerical analysis, maximum displacement and the maximum acceleration is a similar trends. Appeared by increasing occurrence of the value of the displacement and acceleration of the structure with the result long period wave type in accordance with the seismic wave in the case of seismic waves, which shows the results of similar tendency as long period wave type consists of waveform seismic acceleration. Model test and numerical analysis results with in order to increase embankment agricultural reservoir, the displacement was found to ensure it is displayed within one percentage structural stability of the embankment.

A Study on Thermal Stability Improvement in Ni Germanide/p-Ge using Co interlayer for Ge MOSFETs

  • Shin, Geon-Ho;Kim, Jeyoung;Li, Meng;Lee, Jeongchan;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.277-282
    • /
    • 2017
  • Nickel germanide (NiGe) is one of the most promising alloy materials for source/drain (S/D) of Ge MOSFETs. However, NiGe has limited thermal stability up to $450^{\circ}C$ which is a challenge for fabrication of Ge MOSFETs. In this paper, a novel method is proposed to improve the thermal stability of NiGe using Co interlayer. As a result, we found that the thermal stability of NiGe was improved from $450^{\circ}C$ to $570^{\circ}C$ by using the proposed Co interlayer. Furthermore, we found that current-voltage (I-V) characteristic was improved a little by using Co/Ni/TiN structure after post-annealing. Therefore, NiGe formed by the proposed Co interlayer that is, Co/Ni/TiN structure, is a promising technology for S/D contact of Ge MOSFETs.

나노급 Ge-MOSFET를 위한 Ni-N(1%)을 이용한 Ni-germanide의 열 안정성 개선 (Thermal Stability Improvement of Ni-Germanide Using Ni-N(1%) for Nano Scale Ge-MOSFET Technology)

  • 임경연;박기영;장잉잉;이세광;종준;정순연;이가원;왕진석;이희덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.17-18
    • /
    • 2008
  • In this paper, 1%-nitrogen doped Nickel was used for improvement of thermal stability of Ni-Germanide. Proposed Ni-N(1%)/TiN structure has shown better thermal stability, sheet resistance and less agglomeration characteristic than pure Ni/TiN structure. During the germanidation process, it is believed that the nitrogen atoms in the deposited nickel layer can suppress the agglomeration of Ni germanide by retarding the diffusion of Ni atoms toward silicon layer, hence improve the thermal stability of Ni-germanide.

  • PDF

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.331-344
    • /
    • 2006
  • The cable-stayed-suspension hybrid bridge is a cooperative system developed from the traditional cable-stayed and suspension bridges, and takes some advantages of the two bridge systems. It is also becoming a competitive design alternative for some long and super long-span bridges. But due to its great flexibility, the flutter stability plays an important role in the design and construction of this bridge system. Considering the geometric nonlinearity of bridge structures and the effects of nonlinear wind-structure interaction, method and its solution procedure of three-dimensional nonlinear flutter stability analysis are firstly presented. Parametric analyses on the flutter stability of a cable-stayed-suspension hybrid bridge with main span of 1400 meters are then conducted by nonlinear flutter stability analysis, some design parameters that significantly influence the flutter stability are pointed out, and the favorable structural system of the bridge is also discussed based on the wind stability.

트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석 (Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation)

  • 서성탁;허창환;김희덕;지홍기
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

A family of dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.815-837
    • /
    • 2015
  • A new family of structure-dependent integration methods is developed to enhance with desired numerical damping. This family method preserves the most important advantage of the structure-dependent integration method, which can integrate unconditional stability and explicit formulation together, and thus it is very computationally efficient. In addition, its numerical damping can be continuously controlled with a parameter. Consequently, it is best suited to solving an inertia-type problem, where the unimportant high frequency responses can be suppressed or even eliminated by the favorable numerical damping while the low frequency modes can be very accurately integrated.